

AMÉLIORER CE QU'IL Y A DE MEILLEUR

Depuis plus de 10 ans, Calefactio s'est imposé comme un acteur incontournable dans le domaine du chauffage hydronique en Amérique du Nord. Fondée par Catherine et Jean-Philippe Pichette, l'entreprise a su se démarquer grâce à son esprit d'innovation et sa volonté à établir des relations durables basées sur la confiance et la collaboration.

C'est plus de 350 produits, imaginés, conçus et distribués par des gens d'ici, qui témoignent de l'engagement de Calefactio envers la qualité et l'excellence.

La mission des deux jeunes entrepreneurs et de leur équipe va bien au-delà du produit offert. L'entreprise aspire à transformer l'industrie de la plomberie à l'eau chaude en offrant une expérience client unique, axée sur l'humain et l'accessibilité. Cette approche, combinée à un engagement constant envers l'amélioration continue, a permis à Calefactio de se tailler rapidement une place de choix face à la concurrence.

(atherine Jean-Philippe

TABLE DES MATIÈRES

	Réservoirs d'expansion à vessie	6
	Chauffage (HGT/HGTV)	8
	Service kit pour système de chauffage	9
	Master kit pour système de chauffage	10
	Potable (HGTE/HGTEV/FTTE)	13
	Service kit pour système d'eau potable	14
	Accessoires	15
	Séparateurs d'air et de saletés et évents	16
	Séparateurs d'air Cal-X-Tract	19
	Séparateurs de saletés Cal-X-Tract	20
	Séparateurs d'air et de saletés Cal-X-Tract	21
	Évents	22
	Nourrice de distribution de chauffage Calman	23
	Séparateurs hydrauliques	24
	Séparateur hydraulique 4 en 1	26
	Séparateur hydraulique avec bride 4 en 1	27
	Séparateur hydraulique 2 zones	28
ouveau	Séparateur hydraulique en laiton	29
	Systèmes d'appoint au glycol (GMP)	30
	Résidentiel et commercial	32
	Commercial et industriel	35
	Neutralisateurs de condensat CondenSAFE	36
	Neutralisateur CS2	39
	Neutralisateur CS6	40
	Neutralisateur avec pompe CSNP20	41
	Neutralisateur haute capacité CSC28	43
	Valves	44
	Ensemble de valves à bride diélectrique pour pompe	46
ouveau	Clapet anti-retour diélectrique à double bride	47
	Ensemble de valves tout-en-un pour chauffe-eau instantané avec réservoir d'expansion	50
-	Valves pour chauffe-eau instantané	51
uveau	Valves à bille avec drain à haut débit	51
	Régulateurs de débit	52
	Régulateurs fixes	54
	Régulateurs union	54
	Régulateurs industriels	55
	Régulateurs spécialisés	55

Réservoirs d'expansion ASME	56
Chauffage	58
Potable	62
Hydro-pneumatiques	65
Séparateurs d'air, de saletés et hydrauliques ASME	73
Séparateurs d'air	74
Séparateurs d'air Séparateurs d'air et de saletés	74 78
<u>'</u>	
Séparateurs d'air et de saletés	78

Téléchargez le catalogue en ligne

Québec, Canada T 450 951.0818 F 450 951.2165

c info@calefactio.com

© calefactio_solutions f calefactio

in calefactio-solutions-inc

calefactio

calefactio.com

Les renseignements contenus dans ce document sont fondés sur l'information la plus récente disponible au moment de sa publication et sont destinés à une présentation générale de nos produits. L'exactitude de ces renseignements ne peut être garantie. Nos produits sont régulièrement améliorés et leurs spécifications techniques peuvent être modifiés sans préavis. Vous pouvez en tout temps consulter notre site Web pour obtenir toutes les informations en lien avec notre produit.

RÉSERVOIRS D'EXPANSION À VESSIE CONSTRUCTION SOUDÉE ET ROBUSTE CONÇUE POUR RÉSISTER À DE HAUTES **PRESSIONS** L'eau contenue dans la vessie n'entre pas en contact avec la coquille du réservoir ce qui élimine le risque de rouille ou de corrosion. La gamme de réservoirs pour chauffage et eau potable de Calefactio convient à la plupart des installations courantes en plus d'être compatible avec le glycol. Les coques d'acier sont conçues pour résister à des charges de pression élevées et assurer la protection de votre installation. Les réservoirs sont solides et durables, tout en demeurant légers, faciles à manier et simples à utiliser. L'eau n'entre L'eau est contenue Aucune rouille pas en contact dans la vessie avec la coquille ou corrosion du réservoir

Balayez le code QR pour utiliser notre outil de sélection et choisir la bonne taille de réservoir.

CHAUFFAGE

Fonctionnement

Les réservoirs d'expansion des séries HGT et HGTV sont offerts en formats allant de 2 à 74 gallons, en modèles montés sur conduite ou sur socle. Ces réservoirs sont formés d'une coque d'acier conçue pour résister à de hautes pressions, ce qui rend votre installation encore plus sûre.

La vessie d'EPDM sépare l'air de l'eau et en économisant espace et énergie. Ces appareils conviennent aux installations de chauffage, et de refroidissement en plus d'être compatibles avec le glycol.

Caractéristiques

- ► Applications de chauffage
- ▶ Vessie d'EPDM
- ▶ Température maximale: 240°F
- ▶ Précharge: 12 PSI
- Pression maximale d'opération: 115 PSI
- ▶ 2 à 74 gallons

L'eau n'entre pas en contact avec le réservoir

HGT

- Réservoir d'expansion à vessie fixe
- Connexion MNPT vers le haut (sur conduite)

	Volume		÷	Dimension				Daida	
#Modèle			Connex.	А		В		Poids	
	gal	L	Ö	ро	mm	ро	mm	lb	kg
HGT15	2,1	8	1/2"	7,9	200	13,7	348	5	2
HGT30	4,8	18	1/2"	10,6	270	16,3	415	9	4
HGT60M	6	23	1/2″	10,6	270	18,9	480	9,25	4,2
HGT60	8	30	1/2″	13,8	350	17,9	455	14	6
HGT90	13	50	1″	14,9	380	23,0	585	23	10

HGTV

- ▶ Réservoir d'expansion à vessie remplaçable
- Connexion FNPT vers le bas (sur socle)

	Volume		÷	Dimension				Poids	
#Modèle	VOIL	ıme	Connex.	A A		В		Po	ias
	gal	L	O	ро	mm	ро	mm	lb	kg
HGTV30	13	50	1″	14,9	380	25,3	645	25	12
HGTV40	21	80	1″	17,7	450	26,7	680	29	13
HGTV60	26	100	1″	17,7	450	30,1	765	35	16
HGTV90	40	150	1¼″	19,7	500	41,1	1045	49	22
HGTV110	57	215	1¼″	19,7	500	52,1	1325	77	35
HGTV150	74	280	1¼″	19,7	500	63,1	1605	102	46

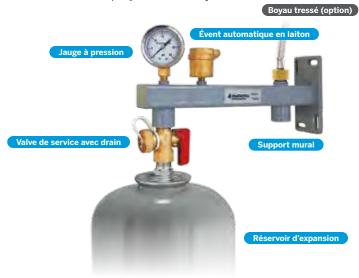
HAUTE TEMPÉRATURE

Caractéristiques

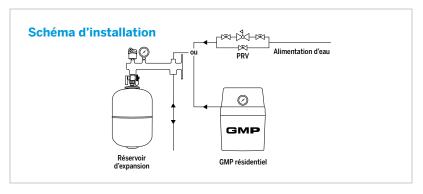
- Compatible avec le glycol
- Vessie d'EPDM
- Revêtement à l'epoxy
- ▶ Coquille en acier soudé
- ► Température maximale: 315°F et plus*
- ▶ Précharge: 25 PSI
- Pression max. d'opération: 150 PSI

Modèle #HTS30

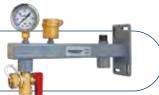
Volume		olume ğ A		В		Poids		
gal	L	Con	ро	mm	ро	mm	lb	kg
6,6	25	1/2"	10,6	270	21	533	12	5,4



SERVICE KIT


ENSEMBLE DE SERVICE POUR SYSTÈME DE CHAUFFAGE

Avantages


- ▶ Simplifie l'achat en fournissant tous les éléments nécessaires en une seule boîte
- Installation sûre, pratique et facile d'accès
- Permet d'avoir un aperçu de l'état du système

#Modèle	Contient		ids
#Wodele	Contient	lb	kg
SERVICEKIT15	HGT15	10	4,6
SERVICEKIT30	HGT30	12	5,5
SERVICEKIT60M	HGT60M ♥ HGSC-MULTI ♥ R8818 ♥ HGSV12 ♥ GAGEO-30BOTTOM	15	6,8
SERVICEKIT60	HGT60	16	7,3

Découvrez tous les accessoires vendus séparément à la page 15.

L'ensemble contient

Support mural

Bâti en acier

#Modèle	Long	Hout	Love	Poids		
#Wodele	e Long. Haut. La	Larg.	lb	kg		
HGSC-MULTI	10¾″	4½″	23/8"	2,8	1,27	

Jauge à pression 1/8" MNPT • 0-30 PSI

#Modèle	Poids		
#Modele	lb	kg	
GAGEO-30BOTTOM	0,22	0,1	

Évent automatique en laiton Nouveau

78 WINT 1			
#Modèle	Poids		
#Wodele	lb	kg	
R8818	0,24	0,11	

Valve de service avec drain ½" MNPT × ½" FNPT

#Modèle	Poids		
#Wodele	lb	kg	
HGSV12	0,66	0,3	

Réservoir d'expansion

#Modèle	Volu	ıme	Poids		
	gal	L	lb	kg	
HGT15	2,1	8	5	2	
HGT30	4,8	18	9	4	
Н G Т60М	6	23	9,25	4,2	
HGT60	8	30	14	6	

En option

Boyau de branchement Boyau tressé 72" 1/2" FNPT × 1/2" MNPT

484-421-	Poids		
#Modèle	lb	kg	
BH72	1,32	0,6	

MASTER KIT JUNIOR

ENSEMBLE DE SERVICE POUR SYSTÈME DE CHAUFFAGE

Une boîte, sept produits. Simplifiez votre achat!

Avantages

- Installation sûre, pratique et facile d'accès
- Permet d'avoir un aperçu de l'état du système

Spécifications techniques

#M - 121 -	-JR15-72 HGT15 • HGSC-MULTI • GAGEO-30BOTTOM • R8818 • HGSV12 • BH72 • GMP4	Poids
#Modèle	Contient	lb kg
MASTERKIT-JR15-72	HGT15 ♣ HGSC-MULTI ♣ GAGEO-30BOTTOM ♣ R8818 ♣ HGSV12 ♣ BH72 ♣ GMP4	21 9,5
MASTERKIT-JR30-72	HGT30 ♣ HGSC-MULTI ♣ GAGEO-30BOTTOM ♣ R8818 ♣ HGSV12 ♣ BH72 ♣ GMP4	23 10,4

Réservoirs d'expansion

			•						Poi Ib	
	#Modèle	Val	1992.0			Dime	nsion		Do	ido
		Volume		Connexion A B po mm po mm lb 3 ½" 7,9 200 13,7 348 5	ias					
		gal	L		ро	mm	ро	mm	lb	kg
	HGT15	2,1	8	1/2"	7,9	200	13,7	348	5	2
	HGT30	4,8	18	1/2"	10,6	270	16,3	415	9	4

Système d'appoint au glycol

		Volume		пре		Dimension						Poids	
	#Modèle			Pom	Α		В		С		Polas		
		gal	L	PSI	ро	mm	ро	mm	ро	mm	lb	kg	
	GMP4	4	15	35	16¼	413	13½	343	71/2	191	9,6	4,4	

L'ensemble contient

Support mural

Bâti en acier

#Modèle	Long	Hout	Lava	Po	oids	
#Wodele	Long.	Haut.	Larg.	lb	kg	
HGSC-MULTI	10¾″	41/2"	23/8"	2,8	1,27	

Jauge à pression 1/8" MNPT • 0-30 PSI

#Modèle	Po	ids
#Modele	lb	kg
GAGEO-30BOTTOM	0,22	0,1

Évent automatique en laiton Nouveau

#Modèle	Poids			
#Модеје	lb	kg		
R8818	0,24	0,11		

Valve de service avec drain ½" MNPT × ½" FNPT

#Modèle	Po	ids
#Modele	lb	kg
HGSV12	0,66	0,3

Boyau de branchement

Boyau tressé 72″ ½″ FNPT × ½″ MNPT

#Modèle	Po	ids
#Modele	lb kg	
BH72	1,32	0,6

Réservoir d'expansion

#Modèle	Description
HGT15	MASTERKIT-JR15-72
HGT30	MASTERKIT-JR30-72

Système d'appoint au glycol

			lb		
#Modèle	Volu	Poids			
#IWIOGEIE	gal	L	lb	kg	
GMP4	4	15	9,6	4,4	

MASTER KIT

ENSEMBLE DE SERVICE POUR SYSTÈME DE CHAUFFAGE

Une boîte, sept produits. Simplifiez votre achat!

Avantages

- Installation sûre, pratique et facile d'accès
- Permet d'avoir un aperçu de l'état du système

Spécifications techniques

	·	Poids
#Modèle	Contient	lb kg
MASTERKIT15-72	HGT15 ♣ HGSC-MULTI ♣ GAGEO-30BOTTOM ♣ R8818 ♣ HGSV12 ♣ BH72 ♣ GMP6	30,2 13,7
MASTERKIT30-72	HGT30 ♣ HGSC-MULTI ♣ GAGEO-30BOTTOM ♣ R8818 ♣ HGSV12 ♣ BH72 ♣ GMP6	32,2 14,6
MASTERKIT60-72	HGT60 ● HGSC-MULTI ● GAGEO-30BOTTOM ● R8818 ● HGSV12 ● BH72 ● GMP6	33,3 15,1

Réservoirs d'expansion

• • • • • • • • • • • • • • • • • • • •									
	Val				Dime	Poids			
#Modèle		ume	Connexion	Α				В	
	gal	L		ро	mm	ро	mm	lb	kg
HGT15	2,1	8	1/2"	7,9	200	13,7	348	5	2
HGT30	4,8	18	1/2"	10,6	270	16,3	415	9	4
HGT60	8	30	1/2"	13,8	350	17,9	455	14	6

Système d'appoint au glycol

-											
	Val		ompe			Dime	nsion			Da	مام
#Modèle	Volume		Pon	A		В		С		Poids	
	gal	L	PSI	ро	mm	ро	mm	ро	mm	lb	kg
GMP6	6	22,7	60	12	305	17,5	445	12	305	18,9	8,6

L'ensemble contient

Support mural

3âti	acie		
			\neg

ĺ	#Modèle	Lana	Haut	Love	Poids		
		Long.	паис.	Larg.	lb	kg	
	HGSC-MULTI	10¾″	41/2"	23/8"	2,8	1,27	

Jauge à pression 1/8" MNPT • 0-30 PSI

#Modèle	Po	ids
#Modele	lb	kg
GAGEO-30BOTTOM	0,22	0,1

Évent automatique en laiton Nouveau

#Modèle	Po	ids
#Моделе	lb	kg
R8818	0,24	0,11

Valve de service avec drain

1/2" MNPT × 1/2" FNPT

#Modèle	Poids			
#Wodele	lb	kg		
HGSV12	0,66	0,3		

Boyau de branchement Boyau tressé 72″ ½″ FNPT × ½″ MN

72 1141 1 A 72 W				
#Modèle	Poids			
#Wodele	lb	kg		
BH72	1,32	0,6		

Kesei vo	ii u expansion
#Modèle	Description
HGT15	MASTERKIT15-72
н G Т30	MASTERKIT30-72
HGT60	MASTERKIT60-72

Système d'appoint au glycol

#MadNa	Vol	ıme	Po	ids
#Modèle	gal	L	lb	kg
GMP6	6	22,7	18,9	8,6

Brevet en attente

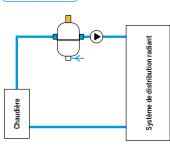
Séparation d'air et de saletés la plus performante de l'industrie grâce à une chambre surdimensionnée qui absorbe les chocs du système.

Le seul dispositif qui combine un réservoir d'expansion, un séparateur d'air et un séparateur de saletés.

Avantages

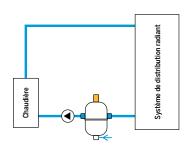
- ▶ Économie d'argent
- ► Économie de temps
- ► Réduit le risque de fuite
- ▶ Réduit le nombre de joints et de soudures

Caractéristiques


- ▶ Media coalescent en acier inoxydable
- ▶ Perte de pression minime (CV22)
- ▶ Bâti en laiton et cuivre
- ▶ Grande efficacité de séparation des solides et saletés
- Rendement supérieur pour la séparation des microbulles
- ▶ Élément interne: acier inoxydable
- ▶ Joint: EPDM
- ▶ Fluides adaptés : Eau et solution de glycol à 50%
- Éventail de température : 32-240°F (0-115°C)
- Pression maximum: 115 PSI

The ONEMD

#Modèle	Volu	ıme	Volu	ıme	Pression	Conn.		Dime	nsion		Do	ido
	èle total		n	et	max. op.	MNPT	A	A	E	3	Poids	
	gal	L	gal	L	PSI	ро	ро	mm	ро	mm	lb	kg
T015	2,7	10	2,7	8	115	1	12,8	325	15,6	395	15	6,82
T030	5,3	20	4,8	18	115	1	12,8	325	22,4	570	19,2	8,73


Schéma d'installation

Configuration 1


Schéma d'installation

Configuration 2

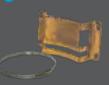
Fonctionnement

Le cœur du réservoir The ONE^{MD} est un séparateur d'air et saletés bâti de laiton de qualité supérieure et hautement résistant. Son efficacité est 40% supérieure à celle d'autres dispositifs d'enlèvement d'air et saletés grâce à sa taille.

L'ensemble comprend

Réservoir d'expansion à vessie remplaçable

Séparateur d'air & de saletés


Évent à flotte automatique Calvent

Valve de drainage

Support mural

POTABLE

- Applications d'eau potable dans un réseau domestique
- Vessie d'EPDM
- ► Température maximale: 200°F (93°C)
- Précharge: 50 PSI
- Pression maximale d'opération: 150 PSI
- ▶ 0,4 à 74 gallons

L'eau n'entre pas en contact avec la coque du réservoir

Balayez le code QR pour utiliser notre outil de sélection et choisir la bonne

taille de réservoir.

HGTE1

▶ Pour chauffe-eau instantané de moins de 2 gallons

#Modèle	Val		×		Dime	nsion		D-	:	
	VOIL	olume X		A		В		Poids		Qté/ bte*
	gal	L	ర	ро	mm	ро	mm	lb	kg	Dic
HGTE1	0,04	0,16	1/2″	3,25	80	4,5	112	0,5	0,2	8

HGTE

- ▶ Réservoir d'expansion à vessie fixe
- Connexion MNPT (acier inoxydable)

		Volume		×.		Dime	Poids			
#Modèle		voiume		Connex.	Α		В		rolus	
		gal	al L ö	ŏ	ро	mm	ро	mm	lb	kg
HGTE5		2,1	8	3/4"	7,9	200	13,7	348	5	2
HGTE8		3,2	12	3/4"	10,6	270	12,8	325	9	4
HGTE12		4,7	18	3/4"	10,6	270	16,7	425	11	5
HGTE25		8,0	30	3/4"	13,8	350	16,4	418	14	6

HGTEV

- ▶ Réservoir d'expansion à vessie remplaçable
- Connexion FNPT (acier inoxydable) vers le bas (sur socle)

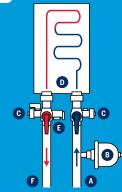
	Volu	ıme š			Dime	nsion		Poi	ide
#Modèle	VOIL	ille	Connex.		4	E	3	FUI	us
	gal	L	ŏ	ро	mm	ро	mm	lb	kg
HGTEV30	14	53	3/4"	14,9	380	26,4	670	26	12
HGTEV42	20	75,8	3/4"	17,7	450	27,8	750	31	14
HGTEV60	30	114	1¼″	17,7	450	31,8	808	37	17
HGTEV80	44	167	1¼″	19,7	500	42,0	1065	52	23
HGTEV180	57	215	1¼″	19,7	500	52,4	1330	75	34
HGTEV200	74	280	1¼″	19,7	500	63,4	1610	103	47

FTTE - À flot continu

Limite les risques de contagion du réseau par la bactérie legionella

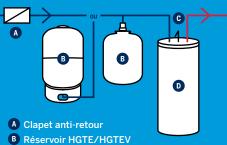
► Évite la stagnation

	Val	Volume			Dime	nsion		De	l al a
#Modèle	VOIL	ume	Connex.	A B		Poids			
	gal	L	3	ро	mm	ро	mm	lb	kg
FTTE5	2,1	8	3/4"	14,3	365	7,9	200	6,3	2,9
FTTE12	4,7	18	3/4"	17,5	445	10,6	270	9,3	4,2
FTTE25	8	30	3/4"	17,5	445	13,8	350	11,5	5,2



Découvrez notre ensemble de valves pour chauffeeau instantané avec réservoir d'expansion à la page 50.

Schéma d'installation


HGTE1

- A Approvisionnement en eau froide
- B Réservoir d'expansion HGTE1
- C Valves pour chauffe-eau instantané (page 51)
- D Chauffe-eau instantané
- E Valve de supression (page 51)
- F Approvisionnement en eau chaude

Schéma d'installation

HGTE/HGTEV

- C Valve de sûreté
- D Chauffe-eau

Schéma d'installation

- D Valve de sûreté
- E Chauffe-eau

^{*}Ce produit est vendu à l'unité, mais il peut également être vendu en boîte maîtresse.

SERVICE KIT

ENSEMBLE DE SERVICE POUR SYSTÈME D'EAU POTABLE

Fonctionnement

L'ensemble de service pour système d'eau potable comprend un réservoir d'expansion (HGTE5, HGTE8, HGTE12 ou HGTE25), une console de service en acier inoxydable (#HGSC-SS) et une valve de service avec jauge à pression (#HGSV34).

La valve de service pour système d'eau potable de Calefactio combine plusieurs fonctions, dont celle de permettre la lecture de la pression du système en tout temps. Lorsque la valve est en position fermée, il est possible de s'en servir pour drainer le réservoir ou en faire l'entretien. Une fois le réservoir drainé, il devient très facile de vérifier que sa pression est égale ou plus élevée que celle du réseau municipal et de l'ajuster afin d'en assurer le bon fonctionnement si tel n'est pas le cas.

Avantages

- Permet d'avoir un aperçu de l'état du système
- Permet d'économiser temps et argent

#Mad21a	Modèle Contient		Poids		
#Wodele			kg		
SERVICEKIT5	HGTE5 HGSC-SS HGSV34	8,7	3,95		
SERVICEKIT8	HGTE8 € HGSC-SS € HGSV34	12,7	5,77		
SERVICEKIT12	HGTE12 [☉] HGSC-SS [☉] HGSV34	14,7	6,68		
SERVICEKIT25	HGTE25 ♥ HGSC-SS ♥ HGSV34	17,7	8,05		

L'ensemble comprend

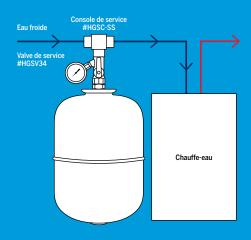
Support mural

Bâti en acier inoxydable

#Modèle	Long. Haut		Love	Poids	
#Wodele	Long.	. naut.	Larg.	lb	kg
HGSC-SS	91/4"	43/4"	23/8"	2,6	1,2

Valve de service avec drain 3/4" MNPT × 3/4" FNPT

0-100 PSI


#Modèle	Poids		
#Модеје	lb	kg	
HGSV34	1,1	0,5	

Réservoir d'expansion

#Modèle	Volu	ıme	Poids		
	gal	L	lb	kg	
HGTE5	2,1	8	5	2	
HGTE8	3,2	12	9	4	
HGTE12	4,7	18	11	5	
HGTE25	8,0	30	14	6	

Schéma d'installation

ACCESSOIRES

CHAUFFAGE

Support mural

Compatible avec

HGT15

#Mad21a	Poi	ids
#Modèle	lb	kg
BRACKET200MM	0,66	0,3

Compatible avec

HGT30 HGT60M T015 T030

#Modèle	Poids		
#Modele	lb	kg	
BRACKET270MM	0,66	0,3	

Valve de service avec drain

#Modèle	Description	Poids	
#Modele	Description	lb	kg
HGSV12	½″MNPT × ½″FNPT	0,66	0,3

Jauge à pression 1/8" MNPT

/// NI		Poids	
#Modèle	Description	lb	kg
GAGEO-30BOTTOM	0-30 PSI	0,22	0,1
GAGEO-100BOTTOM	0-100 PSI	0,22	0,1

Évent automatique en laiton Nouveau

#Modèle	D da Maria	Poids	
	Description	lb	kg
R8818	½″ MNPT	0,24	0,11

Boyau de branchement

Boyau tressé 72"

#MadNa	Description	Poids		
#Modèle	Description	lb	kg	
BH72	½″ FNPT × ½″ MNPT	1,32	0,6	

Support mural pour système de chauffage

HGT60M HGT60
HGT15 HGT30
Compatible avec
bati en acier

4	Modèlo	long H		Lora	Po	Qté/	
#	#Modèle	Long.	Haut.	Larg.	lb	kg	boîte*
HG	SC-MULTI	11″	4¾″	23/8"	2,8	1,27	12

Ensemble de support mural pour système de chauffage

Compatible avec

(HGT15) (HGT30) HGT60M HGT60

#Modèle	Long. Haut.		Lora	Poids		Qté/	
#Модеје	Long. Haut.	паиі.	Larg.	lb	kg	boîte*	
BRACKETKIT-HEAT	11″	7″	22/8"	3,9	1,8	12	

POTABLE

Support mural

Compatible avec

HGTE5 FTTE5

HGTE8 HG1	TE12
FTTE12	
#Madèla	Poids

#Modèle	Po	ids	#
#Wodele	lb	kg	#
BRACKET200MM	0,66	0,3	BRAC

#Modèle	Poids			
#Wodele	lb	kg		
BRACKET270MM	0,66	0,3		

Valve de service avec drain et jauge à pression

Compatible avec

#Modèle	Description	Po	ids
#Wouele	Description	lb	kg
HGSV34	¾" MNPT × ¾" FNPT système ¼" jauge 0-100 PSI	1,1	0,5

Jauge à pression 1/8" MNPT

#Modèle	Description	Po	ids
	Description	lb	kg
GAGEO-100BOTTOM	0-100 PSI	0,22	0,1

Jauge pour test pression maximum

#Modèle	Description	Poids		
#IVIOGEIE	Description	lb	kg	
WPG-C	GHT ¾", 0-200 PSI	0,2	0,1	

Support mural pour système d'eau potable

Bâti en acier inoxydable

Compatible avec

HGTE5 HGTE12 HGTE8 HGTE25

#Modèle	Long. Haut. Larg.	adàla Lang		Po	ids	Qté/
		паит.	Larg.	lb	kg	boîte*
HGSC-SS	9¼″	4¾″	3½″	2,6	1,18	20

Ensemble de support mural pour système d'eau potable Bâti en acier

inoxydable

#Madàla	Long	Haut.	Lara	Poids		Oté/	
#Modèle	Long.		Larg.	lb	kg	boîte*	
BRACKETKIT-POT	9¼″	7″	3½″	3,7	1,7	20	

LA SOLUTION IDÉALE AUX PROBLÈMES D'AIR ET DE SALETÉS DANS LES SYSTÈMES DE CHAUFFAGE

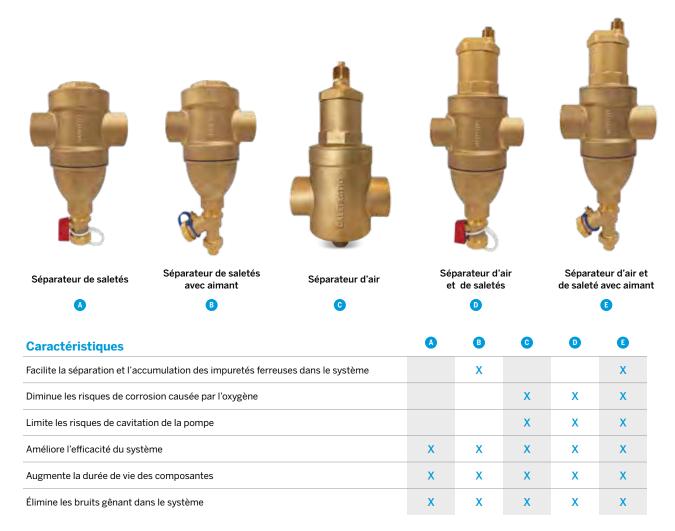

La gamme de séparateurs d'air et de saletés Cal-X-Tract de Calefactio réduit les risques de corrosion et les dommages qui pourraient être causés par la présence d'oxygène, de microbulles d'air et d'impuretés dans les systèmes de chauffage.

Diminue les risques de corrosion

Améliore l'efficacité du système

Limite les risques de cavitation de la pompe

SÉPARATEURS D'AIR ET DE SALETÉS ET ÉVENTS



CAL-X-TRACT™ SÉPARATEURS D'AIR ET DE SALETÉS

La gamme de séparateurs d'air et de saletés Cal-X-Tract de Calefactio réduit les risques de corrosion et les dommages qui pourraient être causés par la présence d'oxygène, de micro-bulles d'air et d'impuretés dans les systèmes de chauffage.

Elle comprend un média coalescent en acier inoxydable qui permet à l'air, aux micro-bulles et aux particules de saletés de s'y accrocher tout en maintenant un débit constant du fluide. Les saletés tomberont au fond où elles pourront être drainées et l'air sera évacué grâce à l'évent automatique Calvent.

Vous obtiendrez un meilleur rendement énergétique et réduirez la fréquence des entretiens. Grâce à son boîtier surdimensionné et à sa conception robuste, vous serez assuré d'avoir un produit fiable et performant durant toute la durée de vie du système.

SÉPARATEURS D'AIR ET DE SALETÉS ET ÉVENTS

CAL-X-TRACT[™] SÉPARATEURS D'AIR

Spécifications techniques

Média coalescent: Acier inoxydable 316
 Connexions: NPT, Sweat ou Press, ¾" à 2"

► Bâti: Laiton

▶ Fluides adaptés : Eau et solution de glycol à 50%

► Température maximale: 120°C (250°F)

Pression max. de conception: 150 PSI

► Raccord pour ventilation à distance

▶ Évent à flotte automatique Calvent

▶ Port de service ½" NPT installé au bas de l'appareil

NPT

	2 Dimension			Poids				
#Modèle	Connex.	А		В		Polas		Qté/ bte [†]
	ŏ	ро	mm	ро	mm	lb	kg	210
CXT-075NC	3/4″	33/8	85	6 1/8	176	2,0	0,9	21
CXT-100N	1″	41/2	115	81/2	215	4,0	1,8	8
CXT-125N	1¼″	41/2	115	81/2	215	4,0	1,8	8
CXT-150N	1½″	81/2	215	81/2	215	4,4	2,0	8
CXT-200N	2″	81/2	215	81/2	215	4,2	1,9	8

Sweat

Séparateur d'air

Connex.	×		Dime	nsion	Da	:	Oté/	
	onne	1	A	E	В		Poids	
	ŏ	ро	mm	ро	mm	lb	kg	bte†
CXT-075SC	3/4"	3%	92	6%	176	2,0	0,9	21
CXT-100S	1″	41/2	115	81/2	215	4,0	1,8	8
CXT-125S	1¼″	41/2	115	81/2	215	3,75	1,7	8
CXT-150S	1½″	51/8	131	81/2	215	4,6	2,1	8
CXT-200S	2″	51/8	143	81/2	215	4,6	2,1	8

Press

Séparateur d'air

×		Dime	nsion		D-	: al a		
nne	1	A	E	В	PO	ias	Qté/ bte [†]	
ŏ	ро	mm	ро	mm	lb	kg	Dic	
3/4"	63/8	162	6%	176	2,4	1,1	21	
1″	71/2	190	81/2	215	4,5	2,1	8	
1¼″	8	203	81/2	215	4,9	2,2	8	
1½″	81/2	216	81/2	215	5,7	2,6	8	
2″	9	229	81/2	215	6,2	2,8	8	
	1" 1¼" 1½"	34" 63% 1" 7½ 1¼" 8 1½" 8½	A po mm %" 6% 162 1" 7½ 190 1¼" 8 203 1½" 8½ 216	16 mm po mm po	A B po mm po mm %" 6% 162 6% 176 1" 7½ 190 8½ 215 1¼" 8 203 8½ 215 1½" 8½ 216 8½ 215	A B Po po mm po mm lb ¾" 6¾ 162 6½ 176 2.4 1" 7½ 190 8½ 215 4,5 1¼" 8 203 8½ 215 4,9 1½" 8½ 216 8½ 215 5,7	A B Poids	

[†]Ce produit est vendu à l'unité, mais il peut également être vendu en boîte maîtresse.

CAL-X-TRAC SÉPARATEURS DE SALETÉS

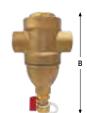
Spécifications techniques

▶ Média coalescent : Acier inoxydable 316 ▶ Connexions: NPT, Sweat ou Press, ¾" à 2"

▶ Valve de drainage: ¾"

► Aimant connexion: ¾" (optionnel)

▶ Bâti: Laiton


▶ Fluides adaptés : Eau et solution de glycol à 50%

► Température maximale: 120°C (250°F) ▶ Pression max. de conception: 150 PSI

Les modèles dotés d'un aimant facilitent la séparation et l'accumulation des impuretés ferreuses grâce à son champ magnétique.

NPT

	×		Dime	nsion	Poids		
#Modèle	Connex.	-	Ą	ı	В	Po	Ias
	ပိ	ро	mm	ро	mm	lb	kg
CXTD-075N	3/4"	4,5	115	8,3	210	3,7	1,7
CXTD-100N	1″	4,5	115	8,3	210	3,7	1,7
CXTD-125N	1¼″	4,5	115	8,3	210	3,7	1,7
CXTD-150N	1½″	4,5	115	8,3	210	4,1	1,9
CXTD-200N	2″	4,5	115	8,3	210	3,9	1,8

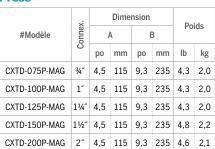
S	W	e	a	t
		_	_	Ī
				-

	×.		Dime	Poids			
#Modèle	Connex.	A III				В	
	ပိ	ро	mm	ро	mm	lb	kg
CXTD-075S	3/4"	4,5	115	8,3	210	3,4	1,6
CXTD-100S	1″	4,5	115	8,3	210	3,4	1,6
CXTD-125S	1¼″	4,5	115	8,3	210	3,4	1,6
CXTD-150S	1½″	5,6	143	8,3	210	4,3	2,0
CXTD-200S	2″	5,6	143	8,3	210	4,1	1,9

Press

	×.		Dime	nsion		D-	:
#Modèle	Connex.	ı	4	E	3	PO	ids
	ర	ро	mm	ро	mm	lb	kg
CXTD-075P	3/4"	6,5	166	8,3	210	3,7	1,7
CXTD-100P	1″	6,5	166	8,3	210	3,7	1,7
CXTD-125P	1¼″	8,0	204	8,3	210	3,7	1,7
CXTD-150P	1½″	8,3	211	8,3	210	4,1	1,9
CXTD-200P	2″	9,0	229	8,3	210	3,9	1,8

Séparateurs de saletés



Sweat

NPT			•		Α	-	
	×.		Dime	Poids			
#Modèle	Connex		A	ı	В	Polas	
	O	ро	mm	ро	mm	lb	kg
CXTD-075N-MAG	3/4"	4,5	115	9,3	235	4,3	2,0
CXTD-100N-MAG	1″	4,5	115	9,3	235	4,3	2,0
CXTD-125N-MAG	1¼″	4,5	115	9,3	235	4,3	2,0
CXTD-150N-MAG	1½″	4,5	115	9,3	235	4,8	2,2
CXTD-200N-MAG	2″	4,5	115	9,3	235	4,6	2,1

#Modèle	٠		Dime	Poids			
	Connex.	I	A	В		rolds	
	Ö	ро	mm	ро	mm	lb	kg
CXTD-075S-MAG	3/4"	4,5	115	9,3	235	4,1	1,9
CXTD-100S-MAG	1″	4,5	115	9,3	235	4,1	1,9
CXTD-125S-MAG	1¼″	4,5	115	9,3	235	4,1	1,9
CXTD-150S-MAG	1½″	5,6	143	9,3	235	5,0	2,3
CXTD-200S-MAG	2″	5,6	143	9,3	235	4,8	2,2

Press

CAL-X-TRACT

SÉPARATEURS D'AIR ET DE SALETÉS

Spécifications techniques

▶ Média coalescent : Acier inoxydable 316 ▶ Connexions: NPT, Sweat ou Press, ¾" à 2"

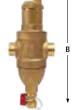
▶ Valve de drainage: ¾"

► Aimant connexion: 3/4" (optionnel)

▶ Bâti: Laiton

▶ Fluides adaptés : Eau et solution de glycol à 50%

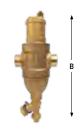
► Température maximale: 120°C (250°F) ▶ Pression max. de conception: 150 PSI ▶ Raccord pour ventilation à distance


▶ Évent à flotte automatique Calvent

Les modèles dotés d'un aimant facilitent la séparation et l'accumulation des impuretés ferreuses grâce à son champ magnétique.

NPT

	×.		Dime		Poids		
#Modèle	Connex.	I	4	В			
	ర	ро	mm	ро	mm	lb	kg
CXTAD-075N	3/4"	4,5	115	11,6	295	4,5	2,1
CXTAD-100N	1″	4,5	115	11,6	295	4,8	2,2
CXTAD-125N	1¼″	4,5	115	11,6	295	4,8	2,2
CXTAD-150N	1½″	4,5	115	11,6	295	5,2	2,4
CXTAD-200N	2″	4,5	115	11,6	295	5,0	2,3


		×.		Dime	nsion		Po	:
#Modè	le	Connex.	A	A	Е	3	PO	ias
		ၓ	ро	mm	ро	mm	lb	kg
CXTAD-0	75S	3/4″	4,5	115	11,6	295	4,5	2,1
CXTAD-1	00S	1″	4,5	115	11,6	295	4,5	2,1
CXTAD-1	25S	1¼″	4,5	115	11,6	295	4,5	2,1
CXTAD-1	50S	1½″	5,6	143	11,6	295	5,4	2,5
CXTAD-2	00S	2″	5,6	143	11,6	295	5,2	2,4

Press

	×.			Poids			
#Modèle	Connex.	-	4	E	3	PO	ius
	S	ро	mm	ро	mm	lb	kg
CXTAD-075P	3/4"	6,5	166	11,6	295	4,5	2,1
CXTAD-100P	1″	6,5	166	11,6	295	4,8	2,2
CXTAD-125P	1¼″	8,0	204	11,6	295	4,8	2,2
CXTAD-150P	1½″	9,4	239	11,6	295	5,2	2,4
CXTAD-200P	2″	10,1	257	11,6	295	5,0	2,3

NPT

INF I							
			Dime	Poids			
#Modèle	Connex.	A onne				В	
		ро	mm	ро	mm	lb	kg
CXTAD-075N-MAG	3/4"	4,5	115	12,6	320	5,2	2,4
CXTAD-100N-MAG	1″	4,5	115	12,6	320	5,5	2,5
CXTAD-125N-MAG	1¼″	4,5	115	12,6	320	5,5	2,5
CXTAD-150N-MAG	1½″	4,5	115	12,6	320	5,9	2,7
CXTAD-200N-MAG	2″	4,5	115	12,6	320	5,7	2,6

Sweat

#Modèle	٠		Dime	Poids			
	Connex.	I	A	В		Polus	
	ŏ	ро	mm	ро	mm	lb	kg
CXTAD-075S-MAG	3/4"	4,5	115	12,6	320	5,2	2,4
CXTAD-100S-MAG	1″	4,5	115	12,6	320	5,2	2,4
CXTAD-125S-MAG	1¼″	4,5	115	12,6	320	5,2	2,4
CXTAD-150S-MAG	1½″	5,6	143	12,6	320	6,1	2,8
CXTAD-200S-MAG	2″	5,6	143	12,6	320	5,9	2,7

Press

#Modèle	J		Dime		Poids		
	Connex.	A		В		Polus	
	O	ро	mm	ро	mm	lb	kg
CXTAD-075P-MAG	3/4"	4,5	115	12,6	320	5,9	2,7
CXTAD-100P-MAG	1″	4,5	115	12,6	320	6,1	2,8
CXTAD-125P-MAG	1¼″	4,5	115	12,6	320	6,3	2,9
CXTAD-150P-MAG	1½″	5,6	143	12,6	320	7,2	3,3
CXTAD-200P-MAG	2″	5,6	143	12,6	320	7,9	3,6

ÉVENTS

ÉVENT À FLOTTE AUTOMATIQUE CALVENT

Caractéristiques techniques

Matériaux

▶ Bâti: laiton

► Couvercle: laiton ► Flotte: polypropylène ▶ Guide de flotte: laiton

▶ Membrure de flotte: acier inoxydable

▶ Joint torique: EPDM

Avantages

- ► Flotte guidée par un arbre
- Améliore l'efficacité des systèmes de chauffage
- Limite la corrosion des composantes des systèmes
- ▶ Raccord pour ventilation à distance ½" MNPT
- ▶ Facile à démonter pour nettoyage et entretien grâce à sa tête hexagonale
- ▶ Un système sans air permet un contact complet entre le liquide caloporteur et les surfaces de transfert assurant un meilleur contrôle de la température

Fluides adaptés

Eau et solution de glycol à 50 %

#Madàla (Connovion	Pression max.	Éventail de temp.		A		В		Poids		Qté/
#Wodele		d'opération	°C	°F	ро	mm	ро	mm	lb	kg	boîte*
CV050	¾″MNPT	150 PSI	0-121	32-250	21/4	56	5½	136	1,6	0,73	18

^{*}Ce produit est vendu à l'unité, mais il peut également être vendu en boîte maîtresse

Évents automatiques en laiton

Les évents automatiques en laiton de Calefactio évacuent l'air emprisonné pour rétablir le fonctionnement optimal de l'installation. Ils sont faits de laiton massif pouvant résister à de hautes températures allant jusqu'à 120°C/248°F.

Ces évents évacuent l'air de façon latérale réduisant l'accumulation de corps étrangers dans le siège.

#Modèle	Connexion	Pression	Dime	nsion	Poids		
	Connexion	Pression	Largeur	Hauteur	lb	kg	
R8818	1/8" MNPT	150 PSI	1¾″	2″	0,24	0,11	
R8814	1/4" MNPT	150 PSI	1¾″	2″	0,25	0,11	
R8812	½″ MNPT	150 PSI	1¾″	2¼″	0,22	0,10	

Évent d'air industriel

L'évent industriel de Calefactio réduit efficacement l'accumulation d'air dans les systèmes tout en optimisant leur performance. Installé aux points stratégiques les plus élevés de votre réseau de tuyauterie, il élimine les poches d'air et offre une solution économique pour maintenir un système plus performant et durable.

#Modèle	Modèle Connexion Pression		Température maximale	Sortie	Po	
					lb	kg
MV15	¾″ FNPT	150 PSI / 1034 kPa	250°F / 121°C	½″ NPT	5,5	2,5

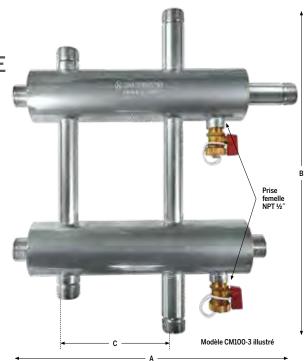
CALMAN

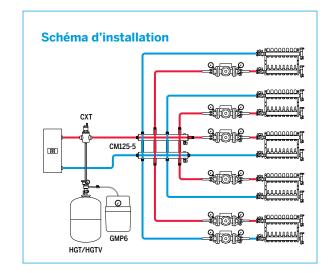
NOURRICE DE DISTRIBUTION DE CHAUFFAGE

La nourrice de distribution Calman permet à l'utilisateur de relier toutes ses zones de chauffage en un seul point.

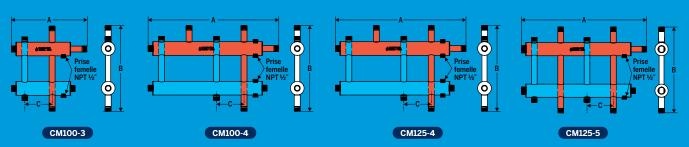
La nourrice de distribution de chauffage Calman garantit une température de liquide caloporteur uniforme dans chaque zone tout en permettant d'économiser temps et argent comme il n'est nécessaire d'installer qu'un item plutôt qu'un grand nombre de coudes et de tés afin de créer les zones requises.

Caractéristiques


- ▶ Température maximale : 100°C (212°F)
 ▶ Pression maximale de conception : 150 PSI
- ▶ Bâti en acier
- Valve de drainage incluse
- ► Connexion de zone 1"

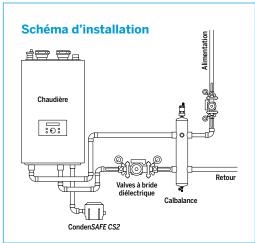

Avantages

- Garantit une température uniforme
- ▶ Économise temps et argent
- ▶ Réduit le nombre de points de fuites potentiels
- Espace suffisant prévu pour recevoir des pompes entre chaque zone
- ▶ Se branche directement au séparateur hydraulique Calbalance


#Modèle	Connex.	Zones	Α		В		С		Poids	
	ро		ро	mm	ро	mm	ро	mm	lb	kg
CM100-3	1	3	16½	421	18¾	476	6	152,4	3,8	1,7
CM100-4	1	4	28½	725	18¾	476	6	152,4	4,0	1,8
CM125-4	11/4	4	28½	725	18¾	476	6	152,4	4,0	1,8
CM125-5	11/4	5	28½	725	18¾	476	6	152,4	4,4	2,0

MODÈLES

SÉPARATEURS HYDRAULIQUES


SÉPARATEUR HYDRAULIQUE 4 EN 1

Le séparateur hydraulique 4 en 1 de Calefactio sépare l'eau, l'air, la saleté et les impuretés ferreuses. Celui-ci comprend un média coalescent qui permet à l'air, aux micro-bulles et aux particules de saletés de s'y accrocher.

Les saletés tomberont au fond où elles pourront être drainées et l'air sera évacué grâce à l'évent automatique Calvent. L'aimant facilite la séparation et l'accumulation des impuretés ferreuses grâce à son champ magnétique et permet également de capturer les contaminants croisés.

Spécifications techniques

- ▶ Bâti en acier peint
- ▶ Élément coalescent
- ▶ Port pour thermomètre ½" FNPT
- Pression maximale d'opération : 150 PSI
- ► Température maximale d'opération : 100°C (212°F)
- ► Connexion: NPT, 1" à 2"
- ▶ Fluides adaptés : eau et solution de glycol à 50%

(Connex.	D.	bit	Dimension									Poids		
#Modèle	FNPT	De	DIT	1	4	Е	3	(С	[)		E	Pol	ias
	ро	GPM	m³/h	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
CB100-4	1	11	2,5	5,5	136	26,7	677	10,2	258,5	85/8	220	7,8	198,5	9,5	4,3
CB125-4	11/4	18	4	6	149	28,4	722	10,7	271	9 1/2	240	8,3	211	11,9	5,4
CB150-4	1½	26	6	7	174	30,5	774	11,3	287	10 1/4	260	8,9	227	15,9	7,2
CB200-4	2	39	9	8	200	32,4	824	11,3	287	11 1/8	300	9,3	237	21,0	9,5

Inclus

Aimant Connexion 3/4" MNPT

#Modèle	Compatible	ı	4	Poids		
#Wodele	avec	ро	mm	lb	kg	
MAGNET7075	CB100-4 CB125-4	4,9	124	0,8	0,4	
MAGNET10075	CB150-4 CB200-4	5,9	150	1,3	0,6	

Évent à flotte automatique

Lveiit a	Event a notte automatique										
#Modèle	Connexion	Po	ids								
	Connexion	lb	kg								
CV050	¾″ MNPT	1,6	0,7								

Bouchon de fermeture

#Modèle	Connexion	Poids			
#Wodele	Connexion	lb	kg		
PLUG050	½″ MNPT	0,07	0,03		

Support mural

Compatible	A	*	Poids		
avec	ро	mm	lb	kg	
CB100	21/8	73	0,6	0,3	
CB125	33/8	86	0,8	0,4	
CB150	31/8	98	1,0	0,5	
CB200	43/8	111	1,8	0,8	

^{*}Distance du centre au mur

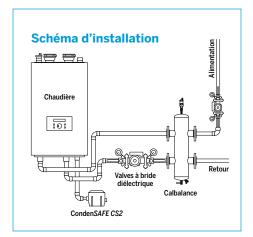
En option

Disponible avec isolation préformée en polyuréthane pour minimiser les pertes de chaleur.

Isolation préformée

#Modèle	Compatible	Poids									
#Wodele	avec	lb	kg								
CB100-FOAM	CB100-4	0,44	0,2								
CB125-FOAM	CB125-4	0,44	0,2								
CB150-FOAM	CB150-4	0,66	0,3								
CB200-FOAM	CB200-4	0,66	0,3								

CALBALANCE SÉPARATEUR HYDRAULIQUE


SÉPARATEUR HYDRAULIQUE AVEC BRIDE 4 EN 1

Le séparateur hydraulique avec bride 4 en 1 de Calefactio sépare l'eau, l'air, la saleté et les impuretés ferreuses. Celui-ci comprend un média coalescent qui permet à l'air, aux micro-bulles et aux particules de saletés de s'y accrocher.

Les saletés tomberont au fond où elles pourront être drainées et l'air sera évacué grâce à l'évent automatique Calvent. L'aimant facilite la séparation et l'accumulation des impuretés ferreuses grâce à son champ magnétique et permet également de capturer les contaminants croisés.

Spécifications techniques

- ▶ Bâti en acier peint
- ▶ Élément coalescent
- Pression maximale d'opération: 150 PSI
- ► Température max. d'opération: 100°C (212°F)
- ► Connexion: Bride, 2 ½", 3"et 4"
- ▶ Fluides adaptés : eau et solution de glycol à 50%

	Conn.	D.4	L:A						Dime	nsion						D-	:
#Modèle	FNPT	De	bit	1	Ą	ı	В	(2	[)	Е		F	-	PO	ids
	ро	GPM	m³/h	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
CB250F-4	21/2	88	20	14	350	42,5	1080	6,6	168	17,5	445	13	330	12	305	63	28,4
CB300F-4	3	132	30	18	467	46,4	1180	8,6	219	17,1	435	17 ¾	450	11,6	295	81	36,8
CB400F-4	4	255	58	18	467	46,4	1180	8,6	219	17,1	435	17 ¾	450	11,6	295	95	43,2

rsion

Inclus

Évent à flotte automatique

#Modèle	Connexion	Po	ids
#Wodele	Connexion	lb	kg
CV050	¾″ MNPT	1,6	0,7

Valve pour évent 34"

#M-121-	Communica	Po	ids
#Modèle	Connexion	lb	kg
11004	¾" FNPT×¾" FNPT	0,37	0,1

Raccord fileté

#Modèle	Connexion	Po	kg
#Modele	Connexion	lb	kg
CN075	¾″MNPT×¾″MNPT	0,08	0,04

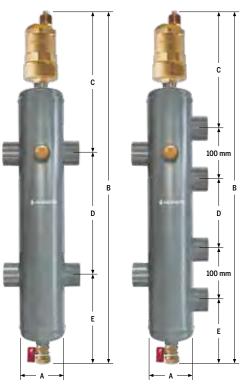
Valve de drainage 1'

ĺ	#10.101	0	Po	ids
	#Modèle	Connexion	lb	kg
	11005	1" FNPT×1" FNPT	0,55	0,25

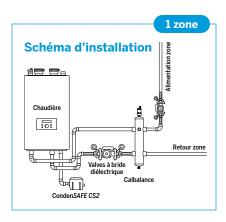
Aimant

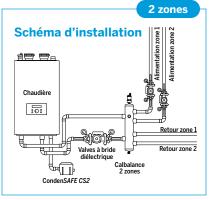
Connexion 3/4" MNPT

Γ	#Madàla	I	4	Poids		
	#Modèle	ро	mm	lb	kg	
	MAGNET10075	5,9	150	1,3	0,6	


SÉPARATEURS HYDRAULIQUES

CALBALANCE SÉPARATEUR HYDRAULIQUE


Les séparateurs hydrauliques ont pour objectif principal d'isoler le circuit primaire du circuit secondaire dans les installations de chauffage et de fonte de neige ce qui permet de prévenir les variations de débits et de température.


Spécifications techniques

- ▶ Bâti en acier peint
- ▶ Port pour thermomètre 1/2" FNPT
- Pression maximale d'opération: 150 PSI
- ► Température maximale d'opération : 100°C (212°F)
- Connexion: NPT, 1" à 2"
- Fluides adaptés: eau et solution de glycol à 50%

#Modèle	Connex.	D.	bit					Dime	nsion					Da	l al a
	FNPT	De	DIL	1	A	E	3	(С	1)	1	E	Po	ias
	ро	GPM	m³/h	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
CB100	1	11	2,5	3	76	26	660	10,5	267	8,7	220	6,8	172	8,4	3,8
CB125	11/4	18	4	3,5	89	28	710	11,1	282	9,4	240	7,4	188	10,8	4,9
CB150	1½	26	6	4,5	114	30	760	11,7	298	10,2	260	8,0	203	14,6	6,6
CB200	2	39	9	5,5	140	32	810	11,7	298	11,8	300	8,4	213	19,6	8,9
						2 7	ZONES								
CB1002Z	1	11	2,5	3	76	25,7	653	8,1	206	4,7	120	5	127	8,8	4
CB1252Z	11/4	18	4	3,5	89	27,5	698	8,6	218	5,5	140	5,5	140	11,2	5,1

Inclus

Support mural

Compatible	A	*	Poids		
avec	ро	mm	lb	kg	
CB100	21/8	73	0,6	0,3	
CB125	33/8	86	0,8	0,4	
CB150	37/8	98	1,0	0,5	
CB200	43/8	111	1,8	0,8	

Évent à flotte automatique

#Modèle	Connexion	Po	ids
#Modele	Connexion	lb	kg
CV050	¾″ MNPT	1,6	0,7

Bouchon de fermeture

#Modèle	Connexion	Poids			
#Modele	Connexion	lb	kg		
PLUG050	½″ MNPT	0,07	0,03		

Valve de drainage

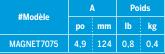
#Modèle	Connexion	Poids			
#Wodele	Connexion	lb	kg		
DV34	¾″ MNPT	0,2	0,1		

En option

1 zone

Aimant Connexion 3/4" MNPT

#Modèle	Compatible	1	4	Poids		
#Modele	avec	ро	mm	lb	kg	
MAGNET7075	CB100 CB125	4,9	124	0,8	0,4	
MAGNET10075	CB150 CB200	5,9	150	1,3	0,6	


isolation	or eror inc		
#Modèle	Compatible		ids
#Wodele	avec	lb	kg
CB100-FOAM	CB100	0,44	0,2
CB125-FOAM	CB125	0,44	0,2
CB150-FOAM	CB150	0,66	0,3
CB200-FOAM	CB200	0,66	0,3

En option

2 zones

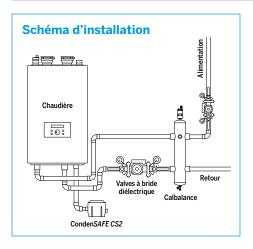
Nouveau

SÉPARATEUR HYDRAULIQUE EN LAITON 4 EN 1

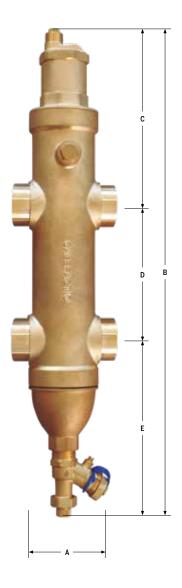
Le nouveau séparateur hydraulique en laiton 4 en 1 de Calefactio sépare l'eau, l'air, la saleté et les impuretés ferreuses. Celui-ci comprend un média coalescent qui permet à l'air, aux micro-bulles et aux particules de saletés de s'y accrocher.

Les saletés tomberont au fond où elles pourront être drainées et l'air sera évacué grâce à l'évent automatique Calvent. L'aimant facilite la séparation et l'accumulation des impuretés ferreuses grâce à son champ magnétique et permet également de capturer les contaminants croisés.

Spécifications techniques


- ▶ Bâti en laiton
- ► Élément coalescent
- ▶ Port pour thermomètre ½" FNPT
- ▶ Pression maximale d'opération: 125 PSI
- ► Température max. d'opération: 110°C (225°F)
- ► Connexion: NPT ou PRESS (1" et 1¼")
- ▶ Fluides adaptés : eau et solution de glycol à 50%

NPT


	Connex.	Dá	hit		Dimension										ido
#Modèle		Débit		Α		В		С		D		E		Poids	
	ро	GPM	m³/h	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
CB100N-4BR	1	10	2,3	4,5	114	21,4	542	7,9	200	6	152	7,5	189	8,5	3,86
CB125N-4BR	11/4	16	3,6	4,5	114	21,4	542	7,9	200	6	152	7,5	189	8,5	3,86

PRESS

	0	Dź	L.L		Dimension									Da	:
#Modèle	#Modèle Connex. Débit		DIT	Α		В		С		D		E		Poids	
	ро	GPM	m³/h	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
CB100P-4BR	1	10	2,3	4,5	114	21,4	542	7,9	200	6	152	7,5	189	10,5	4,76
CB125P-4BR	11/4	16	3,6	4,5	114	21,4	542	7,9	200	6	152	7,5	189	10,5	4,76

SYSTÈME D'APPOINT AU GLYCOL

ÉCONOMIQUE, PERFORMANT ET ROBUSTE

Grâce à la valve intégrée unique à Calefactio, le remplissage du système est plus facile que jamais. De plus, l'ensemble de panneau d'alarme de bas niveau à distance offert en option alerte l'utilisateur en cas de fuite.

(A) GALEFACTIO Prévient les Facilite le Permet de détecter inondations les fuites remplissage majeures

Maintient la pression d'eau dans les boucles fermées de chauffage d'appoint, solaire, chauffage radiant ou système de fonte de neige.

RÉSIDENTIEL

RÉSIDENTIEL

Le système d'appoint au glycol compact qui offre performance et fiabilité! Les GMP de Calefactio sont économiques, robustes, compacts et sont utilisés sur des systèmes pressurisés en boucle fermée.

Leur fonction principale est de maintenir automatiquement la pression d'eau ou d'un mélange eau/glycol dans les boucles fermées de chauffage d'appoint, solaire, chauffage radiant ou système de fonte de neige.

#Modèle

GMP4

Avantages

- Aucun branchement direct à l'eau potable
- Permet de détecter les fuites
- Avertisseur sonore disponible en option
- Entretien facile
- Valve de déviation
- ► Pompe auto-amorçante
- ▶ Branché au système avec un raccord tressé

Spécifications techniques

Vol		Domno			Poids					
VOI	ume	Pompe	A	4	E	3	(С	PO	ias
gal	L	PSI	ро	mm	ро	mm	ро	mm	lb	kg
4	15	35	13¾	350	11¾	300	71/4	185	8,4	3,8

Spécifications

- Soupape de régulation de pression ajustable
- Pompe 24V, 35 PSI (241 kPa), 1 GPM (3,8 LPM)
- Interrupteur de niveau coupe l'alimentation de la pompe lorsque le liquide dans le réservoir est trop bas
- Flotte intégrée pour alarme de bas niveau.
- Raccord tressé

- A Raccord tressé 1/2" FNPT
- B Ouverture 3/4"
- C Valve de déviation
- D Valve d'ajustement de pression
- Pompe 24V, 35 PSI (241 kPa), 1 GPM (3,8 LPM)
- F Jauge à pression à la glycérine (0-60 PSI)
- G Branchement de l'adaptateur
- H Support mural inclus
- Réservoir roto-moulé robuste avec graduation embossée pour un indicateur de niveau qui ne s'estompera pas.
- Adaptateur 24V

En option

Avertisseur sonore GMP4ARLARM

RÉSIDENTIEL ET COMMERCIAL

Les GMP de Calefactio sont économiques, robustes, compacts et sont utilisés sur des systèmes pressurisés en boucle fermée.

Leur fonction principale est de maintenir automatiquement la pression d'eau ou d'un mélange eau/glycol dans les boucles fermées de chauffage d'appoint, solaire, chauffage radiant ou système de fonte de neige.

Spécifications techniques

	Val						Dime	nsion			D-	: 41-
#Modèle	VOII	ume	Pompe		Α		I	В	С		Poids	
	gal	L	PSI	Ampère	ро	mm	ро	mm	ро	mm	lb	kg
GMP6	6	22,7	60	0,6 A	12	305	17,5	445	12	305	18,9	8,6
GMP18	18	68,1	60	0,6 A	12	305	39,3	997	12	305	26,6	12,1
GMPLC55	55	208	100	0,9 A	24	610	48,0	1219	-	-	37,8	17,2
GMPLC100	100	379	100	0,9 A	33	838	62,0	1575	-	-	51,5	23,4
GMP6S*	6	22,7	100	0,6 A	12	305	17,5	445	12	305	18,9	8,6
GMP18S*	18	68,1	100	0,6 A	12	305	39,3	997	12	305	26,6	12,1

* Modèle solaire

Spécifications

- Pompe: 1,6 GPM (6 L/m) GMP6 et GMP18: 60 PSI GMPLC55 et GMPLC100: 100 PSI
- ► Raccord tressé
- 120 Vac/1 ph/60 Hz, fiche standard avec cordon d'alimentation de 1,8 m (6 pi).
- Interrupteur de niveau avec fiche (piggyback), coupe l'alimentation de la pompe lorsque le liquide dans le réservoir est trop bas.
- ► La soupape de régulation de pression est facilement ajustable pour maintenir une pression pouvant aller jusqu'à 412,8 kPa (60 psig), et 690 kPa (100 psig) pour les modèles solaires.

- A Raccord tressé 1/2" FNPT
- B Ouverture 3/4" pour retour de la soupape de sûreté du système
- C Valve de déviation
- D Valve d'ajustement de pression
- E Pompe
- F Jauge à pression à la glycérine
- **G** Valve à 3 voies pour remplissage*

*GMP6 et GMP18 seulement.

ACCESSOIRES

Boyau de branchement Compatible avec GMP4 GMP6 GMP18 GMP6S GMP18S GMPLC55 GMPLC100

#Modèle	Description	Poids			
#Iviodele	Description	lb kg			
GMP4ALARM	Alarme de bas niveau	0,1	0,04		

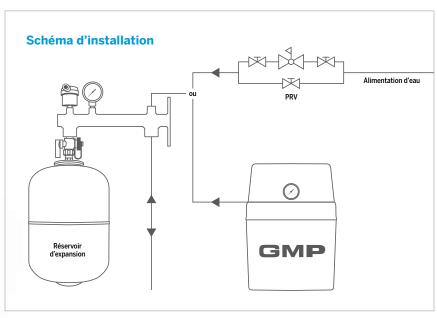
#Modèle	Description	Po	ids
#IVIOUEIE	Description	lb	kg
GMP6WMS	Support mural pour GMP6	7,48	3,4

#Modèle	Description	Poi	ids		
#IVIOUEIE	Description	lb	kg		
BH72	Boyau tressé 72" ½" FNPT × ½" MNPT	1,32	0,6		

#Mad21a	Description	Po	ids
#Modèle	Description	lb	kg
GMPAL	Alarme de bas niveau à distance	1,98	0,9

#Modèle	Description	Po	ds
#IVIOGEIE	Description	lb	kg
GMPDC	Interrupteur de bas niveau	1,32	0,6

#Modèle


GMPFILLINGKIT

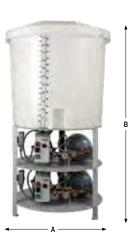
0,22 0,1

Boyau réutilisable

COMMERCIAL ET INDUSTRIEL

Simple

- ▶ Réservoir de 50 ou 100 gallons
- ▶ 1 pompe de surpression de 1/3 ou 1/2 C.V.
- ▶ 1 régulateur de pression
- ▶ Pression maintenue entre 10 et 70 PSI


	Mo	teur	Val	ıme		Dime	nsion		Poids	
#Modèle	IVIO	teur	VOIL	HIII	1	A		В	арр	rox.
	HP	kW	gal	L	ро	mm	ро	mm	lb	kg
GMP13050	1/3	0,2	50	189	28	710	42	1070	90	41
GMP13100	1/3	0,2	100	378	28	710	67	1700	105	47
GMP15050	1/2	0,4	50	189	28	710	42	1070	95	43
GMP15100	1/2	0,4	100	378	28	710	67	1700	110	49

Double

- ▶ Réservoir de 50 ou 100 gallons
- ▶ 2 pompes de surpression de 1/3 ou 1/2 C.V.
- ▶ 2 régulateurs de pression
- ▶ Pression maintenue entre 10 et 70 PSI

	Mo	teur	Volu	ıme		Dime	nsion		Poids	
#Modèle	IVIO	Leur	VOIL	Jille	1	Ą		В	app	rox.
	HP	kW	gal	L	ро	mm	ро	mm	lb	kg
GMPD23050	1/3	0,2	50	189	28	710	55	1400	153	69
GMPD23100	1/3	0,2	100	378	28	710	78	1980	166	75
GMPD25050	1/2	0,4	50	189	28	710	55	1400	153	69
GMPD25100	1/2	0,4	100	378	28	710	78	1980	166	75

Jumeau

- ▶ Réservoir de 50 ou 100 gallons
- ▶ 2 pompes de surpression de 1/3 ou 1/2 C.V.
- 2 régulateurs de pression
- ▶ Pression maintenue entre 10 et 70 PSI
- Alternance gérée par un panneau de contrôle muni d'un alternateur et deux démarreurs magnétiques

#Modèle	Moteur		Volume		Dimension				Poids	
					А		В		approx.	
	HP	kW	gal	L	ро	mm	ро	mm	lb	kg
GMPT33050	1/3	0,2	50	189	28	710	55	1400	188	85
GMPT33100	1/3	0,2	100	378	28	710	78	1980	201	91
GMPT35050	1/2	0,4	50	189	28	710	55	1400	188	85
GMPT35100	1/2	0,4	100	378	28	710	78	1980	201	91

Spécifications

Capacité d'appoint 1,8 gpm@70 PSI 6,8 L/m@482 kPa

Voltage 120 V/1 ph/60 Hz

Plage de pression 10-70 PSI/69-482 kPa

L'ensemble contient

- ► Base sur pied
- ► Pompe et moteur (une ou deux)
- ► Sonde de détection de liquide
- ▶ Manomètre
- ► Panneau d'alarme sonore et visuelle
- ➤ Démarreur magnétique avec sélecteur (automatique, manuel, éteint)
- ► Réservoir de 50 ou 100 gallons

En option

Alarme de haut niveau GMPFO

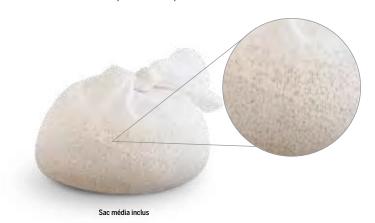
CONDENSAFE UNE INNOVATION EN MATIÈRE DE NEUTRALISATION DE CONDENSAT Les sacs de média d'ingénierie sont économiques et sûrs pour l'environnement. Il n'est pas nécessaire de déconnecter l'unité pour remplacer le média. Sécuritaire pour Média facile Simple à installer à remplacer l'environnement

NEUTRALISATEURS DE CONDENSAT

- ▶ 3 sections
- ► Capacité de traitement maximale: 6,3 GPH

- ▶ 2 sections
- Capacité de traitement maximale: 4,2 GPH
 Pompe à l'épreuve de l'eau et de la poussière (IP65)

Indicateur de temps inclus


- Commercial
- Modulaire
- ► Capacité de traitement: 10500 MBH

CALEFACTIO CATALOGUE 2025 | 37

CONDENSAFE NEUTRALISATEUR DE CONDENSAT

La gamme de neutralisateurs de condensat CondenSAFE de Calefactio offre une solution pratique, rapide et surtout sans gâchis lors de l'entretien annuel de l'unité. Son couvercle robuste situé sur le dessus de l'unité offre un accès direct au sac de média d'ingénierie. Il n'est donc pas nécessaire de déconnecter le neutralisateur pour remplacer le média.

Indicateur de temps

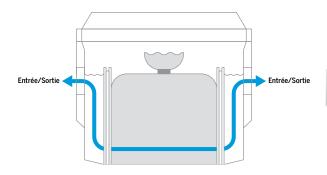
Afin de protéger l'environnement et les composantes du bâtiment, nous avons inclus un indicateur de temps de 12 mois qui permet de savoir quand remplacer les sacs de média d'ingénierie.

S'ils ne sont pas changés régulièrement, l'eau continuera de circuler, mais ne sera plus traitée. Il est donc important de remplacer les sacs de média au moins une fois par an ou plus tôt si nécessaire, afin de protéger le drain contre la corrosion.

Installation

- 1 Appuyer fermement sur le bouton d'activation
- 2 Décoller la feuille et installer sur le couvercle de l'unité
- 3 Inscrire la date d'activation (mois/année)
- 4 Changer le sac de média à chaque année ou lorsque requis

Caracteristiques			
Peut être raccordé à de la tuyauterie rigide	X	X	X
Indicateur de temps 12 mois inclus	X	X	X
Nombre de sections disponibles	1 section	2 sections	3 sections
Nombre de sacs de média inclus	1 sac inclus	1 sac inclus	1 sac inclus
Capacité de traitement maximale	525 MBH	1050 MBH	1575 MBH
Tuyau flexible		Inclus (20')	Option (10')
Support mural	X	X	Х
Pompe à l'épreuve de l'eau et de la poussière (IP65)		X	


Modèle #CS2

Δ		D					D Entrée		Do	ido	Capa	icité de	traite	ment	Volum	e max.
,	4		0	,	5		,	Entrée Poids Sortie		ILICC		1 section			de traitement†	
ро	cm	ро	cm	ро	cm	ро	cm		lb	kg	MBH	kWh	gal/h	L/h	GPH	LPH
5¾	14,5	4¾	12	5	13	21/2	6	¾″FNPT	2,9	1,32	525	154	2,1	8	2,1	8

[†]Vérifiez le débit de condensat produit par votre appareil. De façon générale, une chaudière d'une capacité de 500 000 BTU/h à 92 % d'efficacité devrait générer environ 1,6 gal/h de condensat.

Avantages

- ▶ Simple à installer avec support mural inclus
- ▶ Un sac de média inclus
- ▶ Média contenu dans un sac facile à remplacer sans gâchis
- ▶ Il n'est pas nécessaire de déconnecter l'unité pour remplacer le média
- Indicateur de temps (12 mois) inclus
- ► Aucun contournement nécessaire pour dérivation
- ▶ Économique et sûr pour l'environnement
- ▶ Peut être raccordé à de la tuyauterie rigide
- ► Couvercle et réservoir robuste et durable

Inclus

Sac de média d'ingénierie

#Madàla	Poids				
#Modèle	lb	kg			
CSM2	1,7	0,78			

Indicateur de temps 12 mois

#Modèle	Po	ids
#Modele	lb	kg
CSTS	0,44	0,002

Raccord droit Connexion ¾" MNPT

× ¾" collé

Coude de 90° Connexion ¾″ MNPT × ¾″ collé

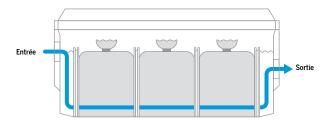
Indicateur de temps inclus

En option

Out at initiala							
#Madàla	Po	ids					
#Modèle	lb	kg					
CSM2	1,7	0,78					

Modèle #CS6

	A	E	3	(D	E	Entrée	Poids	Qté/
ро	cm	ро	cm	ро	cm	po cm	po cm	Sortie	lb kg	boîte*
12	30,5	4¾	12	5½	14	2½ 6	3 7,6	½″ FNPT	4,18 1,9	6


^{*}Ce produit est vendu à l'unité, mais il peut également être vendu en boîte maîtresse.

				Capa	cité de	traite	traitement						Volume maximal		
1 section				2 sections				3 sections				de traitement†			
MBH	kWh	gal/h	L/h	MBH	kWh	gal/h	L/h	MBH	kWh	gal/h	L/h	GPH	LPH		
525	154	2,1	8	1050	308	4,2	16	1575	461	6,3	24	6,3	24		

[†]Vérifiez le débit de condensat produit par votre appareil. De façon générale, une chaudière d'une capacité de 500 000 BTU/h à 92 % d'efficacité devrait générer environ 1,6 gal/h de condensat.

Avantages

- ▶ Simple à installer avec support mural inclus
- ▶ Un sac de média inclus
- Indicateur de temps (12 mois) inclus
- Aucun contournement nécessaire
- ▶ Économique et sûr pour l'environnement
- ▶ Peut être raccordé à de la tuyauterie rigide
- ► Couvercle et réservoir robuste et durable
- ▶ Média contenu dans un sac facile à remplacer sans gâchis
- ▶ Il n'est pas nécessaire de déconnecter l'unité pour remplacer le média

Utilisez uniquement les sections dont vous avez besoin

Sac de média d'ingénierie

#Modèle	Po	ids
#Modele	lb	kg
CSM2	1,7	0,78

Indicateur de temps 12 mois

#Madble	Po	ids
#Modèle	lb	kg
CSTS	0,44	0,002

Supports muraux

#Modèle	Po	ids
#Modele	lb	kg
CSB	0,44	0,2

2 raccords cannelés Connexion 34" MNPT × ¾" cannelé

2 raccords collés Connexion 1/2" MNPT × ¾" collé

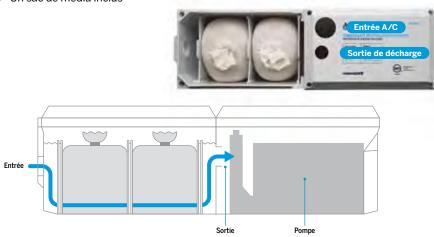
En option

Ensemble de boyau et attaches Longueur: 10' • Diamètre: 1/2"

#M - d N -	Po	Qté/	
#Modèle	lb	kg	Qté/ boîte*
CSHK	1,32	0,6	12

Ce produit est vendu à l'unité, mais il peut également être vendu en boîte maîtresse.

Sac de média


Modèle #CSNP20

A B		(0	0)	Entrée	Poids				
ро	cm	ро	cm	ро	cm	ро	cm	Entree	lb	kg	
15%	40	5	12,7	4¾	12	3	7,6	¾″ FNPT	9,43	4,28	
		Cap	oacité de	traitem	ent			Volume maximal de traitement*			
	1 se	ection			2 sec	ctions					
MBH	kWh	Gal/h	L/H	MBH	kWh	Gal/h	L/H	GPH	L/H		
525	151	2.1	8	1050	308	4.2	16	4,2	16		

*Vérifiez le débit de condensat produit par votre appareil. De façon générale, une chaudière d'une capacité de 500 000 BTU/h à 92 % d'efficacité devrait générer environ 1,6 gal/h de condensat.

Avantages

- Indicateur de temps (12 mois) inclus
- ▶ Économique et sûr pour l'environnement
- Couvercle et réservoir robuste et durable
- ▶ Média contenu dans un sac facile à remplacer sans gâchis
- ▶ Il n'est pas nécessaire de déconnecter l'unité pour remplacer le média
- ▶ Pompe à l'épreuve de l'eau et de la poussière
- ► Clapet anti-retour
- ▶ Un sac de média inclus

Inclus

Sac de média d'ingénierie

484 - 421 -	Poids				
#Modèle	lb	kg			
CSM2	1,7	0,78			

Indicateur de temps 12 mois

AM ad Ma	Po	ids
#Modèle	lb	kg
CSTS	0,44	0,002

Pompe (IP65)

#Modèle	Pi	uissan	Poids		
#Моделе	Volt	Hz	Amps	lb	kg
CSP20	120	60	2,0	3,0	1,4

1 tuyau flexible 3/8" de 20'

1 câble d'alimentation 120V, 60Hz, 7,2 pi (2,2m)

1 interrupteur de sûreté

3 supports muraux

En option

Panneau d'alarme

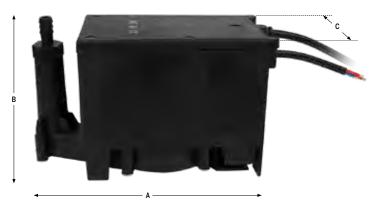
railileau u alai ille							
#Modèle		Poids					
#Wodele		lb	kg				
CAL-AL120	1	.,98	0,9				

Sac de média

#Modèle Ib	ks	,
		,
CSM2 1,7	0,7	8

Conforme à UL 778 CSA 22.2 N°108 F114970

POMPE


Modèle #CSP20 (IP65)

	Dimensions Puissance				ssance			Arrêt		De	ébit GPH/LF	РН		Poids	
A po mm	B po mm	ро	C	Volt	Hz	Amps	Décharge	Câble	pi/m	1′	5′	10′	15′	20′	lb kg
6,7 170	3,9 100	3,1	80	120	60	2,0	3/8″ I.D.	7,2′	20/6,1	114/430	108/410	87/330	58/220	20/75	3,0 1,4

Caractéristiques

- ▶ Classe de protection IP65 (comparable à NEMA 4), à l'épreuve de l'eau et de la poussière
- Câble à trois fils de 7,2 pi (2,2 m) prise avec mise à la terre
- ▶ Pompe encapsulée et fluide refroidi protégé thermiquement
- ▶ Silencieuse
- ► Conception de pompe centrifuge
- ▶ Boîtier fait de plastique de nylon de verre (résistant à l'acide, ≥ Ph3)
- ► Température maximale de l'eau: 158°F (70°C)
- ► Démarrage et arrêt automatique
- Construction compacte permettant l'économie d'espace
- ► Clapet anti-retour intégré
- ▶ Pompe non-submersible
- ▶ Interrupteur de sûreté intégré, NO ou NC
- ▶ Conçu pour éviter les incendies et les courts-circuits

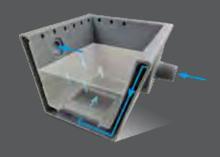
Point d'opération au démarrage \pm 1%" (35mm), arrêt \pm ½" (13mm), alarme 1%" (41mm)

NEUTRALISATEUR HAUTE CAPACITÉ

Le Conden*SAFE* étant modulaire, il est possible d'installer jusqu'à 3 unités en série pour obtenir un traitement pouvant atteindre 10 500 MBH.

Caractéristiques

- L'ensemble du volume de condensat traverse toute l'épaisseur du média d'ingénierie
- ▶ Traitement optimisé par l'alimentation par le bas
- ▶ Trop-plein intégré pour éviter les débordements
- ► Facile à nettoyer
- Muni du média d'ingénierie de Calefactio


Modèle #CSC28

Capacité	Vol. max. de traitement par heure		А		В		С		D		Connexion		Poids	
	L	gal	ро	mm	ро	mm	ро	mm	ро	mm	Entrée	Sortie	lb	kg
3500 MBH 1026 KwH	106	28	7½	190	10½	267	16¼	414	5½	140	1" MNPT	1" FNPT	18	8,18

La capacité de traitement peut être augmentée

Fonctionnement

Les unités CondenSAFE commerciales sont conçues de façon à optimiser le mode d'écoulement du condensat brut. Le réacteur à double paroi offre un volume tampon pour préneutralisation.

Le condensat coule verticalement d'une façon ascendante à travers tout le média réactif. Une couche de quelques centimètres de condensat neutralisé est omniprésente à la surface du média, minimisant ainsi les échanges gazeux directs entre l'air ambiant, contenant du CO₂, et le média.

Inclus

Indicateur de temps

12 mois

#Modèle	Poids				
#Модеје	lb	kg			
CSTS	0,44	0,002			

Média d'ingénierie

Convient au #CSC28

#Modèle	Poids				
#Wodele	lb	kg			
CSM28	10,3	4,7			

Union de connexion

Pour installation en série

#Modèle	Poids				
#модеје	lb	kg			
CSCUK	0,2	0,1			

E ET EXCLUSIV
eurs avantages afin

VALVES

CONCEPTION UNIQUE ET EXCLUSIVE

La série de valves de Calefactio offre plusieurs avantages afin de protéger et faciliter la maintenance des systèmes.

Solide et durable

Facile à installer

Simplifie le drainage et la maintenance

VALVES

ENSEMBLE DE VALVES À BRIDE DIÉLECTRIQUE POUR POMPE

Lecture rapide de l'état du système

Simplifie le drainage et le remplissage

Assure une grande étanchéité

La seule valve à bride pour pompe qui permet de constater l'état du système en un clin d'œil. En prenant la lecture des jauges à pression de chaque côté de la pompe, on obtient le différentiel de pression en PSI, aussi connu sous l'appellation Delta P (Δ P).

Spécifications techniques

- ▶ Bâti en laiton forgé
- ► Connexions: NPT, Sweat ou Press, 34" à 11/2"
- ► Bride rotative diélectrique
- ▶ 1 valve avec drain et port pour jauge à pression intégré
- ▶ 1 valve avec 2 ports pour jauge à pression intégré
- ▶ Valve à bille en laiton à passage intégral
- Filetage conforme à la norme ANSI B1.20.1
- ▶ Pression d'opération à froid: 500 CWP (Cold Working Pressure)

Jauge à pression

#Modèle	PSI	Poids			
#IVIOUEIE	FSI	lb	kg		
GAGEO-30BOTTOM	0-30	0,22	0,1		
GAGEO-100BOTTOM	0-100	0,22	0,1		

Jauge non-incluse

NPT

#Mad21a	Tailla	Poids			
#Modèle	Taille	lb	kg	Qté/ bte [†]	
PF034N	3/4"	3,3	1,5	12	
PF100N	1″	4,2	1,9	8	
PF114N	11/4"	5,5	2,5	8	
PF112N	1½″	6,4	2,9	4	

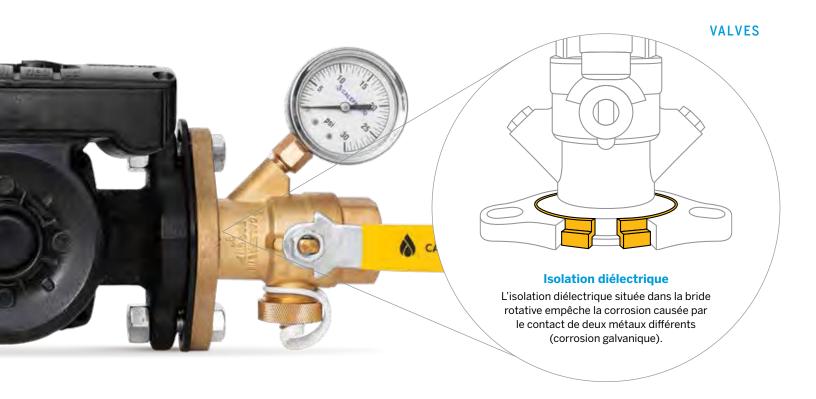
Jauge non-incluse

Press

#Modèle	Taille	Po	ids	Qté/
#IVIOGEIE	Taille	lb	kg	bte†
PF034P	3/4"	3,4	1,6	12
PF100P	1″	4,2	1,9	8
PF114P	1¼″	5,7	2,6	8
PF112P	11/2"	6.8	3,1	4

*Modèles sans drain seulement. †Ce produit est vendu à l'unité, mais il peut également être vendu en boîte maîtresse.

Jauge non-incluse


Sweat

#Modèle	Taille	Po	Poids		
#IVIOGEIE	Taille	lb	kg	Qté/ bte [†]	
PF034S	3/4"	3,2	1,5	12	
PF100S	1″	4,1	1,9	8	
PF114S	1¼″	5,4	2,4	8	
PF112S	1½″	6,2	2,8	4	

Jauge non-incluse

PEX F1960

FLX 11900						
414-421-	Tailla	Po	Poids Oté			
#Modèle	Taille	lb	kg	Qté/ bte [†]		
PF034F	3/4"	3,3	1,5	12		
PF100F	1″	4,2	1,9	8		
PF114F	11/4"	5,6	2,6	8		
PF112F	11/2"	6.6	3.0	4		

Courbe de performance de la pompe

Comment obtenir le débit de ma pompe en gallon par minute?

- 1. Procéder à la lecture des jauges à pression de chaque côté de la pompe;
- 2. Soustraire la pression la plus petite de la pression la plus élevée pour obtenir le différentiel de pression en PSI aussi appelé Delta P (ΔP);
- 3. Convertir cette mesure en pied de tête en multipliant par 2,3;
- 4. Utiliser la courbe de performance de la pompe pour obtenir le débit de la pompe en gallon par minute.

Nouveau

CLAPET ANTI-RETOUR DIÉLECTRIQUE À DOUBLE BRIDE

Améliorez votre système de chauffage avec l'anti-retour diélectrique de Calefactio qui s'adapte parfaitement à une large gamme de pompes de ¾ ″ à 1½ ″. Elle peut également s'installer sur toutes les pompes à bride standard et à haute vélocité, garantissant ainsi compatibilité et facilité d'utilisation. Elle est inclus avec un joint d'étanchéité ainsi que 2 écrous et 2 boulons.

Spécifications techniques

- ► Bride: Laiton
- ► Boulons et écrous : Acier
- ► Bague diélectrique: Nylon
- ► Corps: Laiton
- ► Clapet anti-retour: POM
- ► Joint de bride: NBR
- ▶ Pour bride de pompe de ¾" à 1½"
- ► Inclus 1 joint d'étanchéité, 2 écrous et 2 boulons

#Madèla	Connexion	Po	Poids			
#Modèle	Connexion	lb kg	kg			
DDFC	¾″à 1½″	1,63	0,74			

VALVE À BRIDE DIÉLECTRIQUE POUR POMPE

AVEC DRAIN

Spécifications techniques

- ▶ Bâti en laiton forgé
- ► Connexions: NPT, Sweat ou Press, ¾" à 1½"
- ► Bride rotative diélectrique
- ▶ Un drain et un port pour jauge à pression
- ▶ Valve à bille en laiton à passage intégral
- Filetage conforme à la norme ANSI B1.20.1
- Pression d'opération à froid: 500 CWP (Cold Working Pressure)

Jauge à pression

En option

#Modèle	PSI	Poids	
#Modele	FSI	lb	kg
GAGEO-30BOTTOM	0-30	0,22	0,1
GAGEO-100BOTTOM	0-100	0,22	0,1

NPT

#Mad21a	Taille	Po	ids	Qté/	
#Modèle	laille	lb	kg	bte†	
PF034N-D	3/4″	1,7	0,8	24	
PF100N-D	1″	2,1	1,0	18	
PF114N-D	1¼″	2,8	1,3	12	
PF112N-D	1½″	3,3	1,5	12	

#Modèle	Taille	Poids		Qté/ bte [†]	
#Wodele	laille	lb	kg	Ďte†	
PF034S-D	3/4"	1,7	0,8	24	
PF100S-D	1″	2,1	0,9	18	
PF114S-D	1¼″	2,7	1,2	12	
PF112S-D	1½″	3,2	1,4	12	

#Modèle	Taille	Po	ids	Qté/
#IVIOGEIE	Taille	lb	kg	bte†
PF034P-D	3/4"	1,8	0,8	24
PF100P-D	1″	2,2	1,0	18
PF114P-D	1¼″	2,9	1,3	12
PF112P-D	1½″	3,4	1,6	12

PEX F1960

#Modèle	Taille	Poids		Qté/	
#IVIOUEIE	Taille	lb	kg	bte†	
PF034F-D	3/4"	1,7	0,8	24	
PF100F-D	1″	2,1	1,0	18	
PF114F-D	1¼″	2,9	1,3	12	
PF112F-D	1½″	3,3	1,5	12	

†Ce produit est vendu à l'unité, mais il peut également être vendu en boîte maîtresse.

VALVE À BRIDE DIÉLECTRIQUE POUR POMPE

SANS DRAIN

Spécifications techniques

- ▶ Bâti en laiton forgé
- ► Connexions: NPT, Sweat ou Press, ¾" à 1½"
- ► Bride rotative diélectrique
- 2 ports pour jauge à pression
- ▶ Valve à bille en laiton à passage intégral
- ▶ Filetage conforme à la norme ANSI B1.20.1
- Pression d'opération à froid: 500 CWP (Cold Working Pressure)

Jauge à pression

DCI	Poids	
PSI	lb	kg
0-30	0,22	0,1
0-100	0,22	0,1
		PSI lb 0-30 0,22

Sweat

#Modèle	Taille	Poids		Qté/	
#IVIOUEIE	laille	lb	kg	bte†	
PF034S-ND	3/4"	1,6	0,7	24	
PF100S-ND	1″	2,0	0,9	18	
PF114S-ND	1¼″	2,6	1,2	12	
PF112S-ND	1½″	3,1	1,4	12	

#Modèle	Taille	Po	ids	Qté/
#Wodele	Taille	lb	kg	bte†
PF034N-ND	3/4"	1,6	0,7	24
PF100N-ND	1″	2,1	0,9	18
PF114N-ND	1¼″	2,7	1,2	12
PF112N-ND	1½″	3,2	1,4	12

[†]Ce produit est vendu à l'unité, mais il peut également être vendu en boîte maîtresse.

		Po	ids	Otá/
#Modèle	Taille	lb	kg	Qté/ bte [†]
PF034P-ND	3/4"	1,7	0,8	24
PF100P-ND	1″	2,1	1,0	18
PF114P-ND	1¼″	2,8	1,3	12
PF112P-ND	1½″	3,3	1,5	12

P	EX	F19	96	0

#Modèle	Taille	Po	Qté/	
#IVIOUEIE	Tallie	lb	kg	bte†
PF034F-ND	3/4"	1,6	0,7	24
PF100F-ND	1″	2,1	0,9	18
PF114F-ND	1¼″	2,8	1,3	12
PF112F-ND	11/2"	3,2	1,5	12

VALVE À BRIDE POUR POMPE 2"

SANS DRAIN

L'ensemble

Sans drain

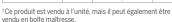
Jauge non-incluse

NPT

#Modèle	Taille	Po	ids	Qté/ bte [†]
#Wodele	laille	lb	kg	bte†
PF200N	2″	9,7	4,4	3

Jauge non-incluse

Sweat


#Modèle	Taille	Po	ids	Qté/
#Iviouele	laille	lb	kg	bte†
PF200S	2″	9,5	4,3	3

Jauge non-incluse

Press

#Modèle	Taille	Po	ids	Qté/
#Iviouele	laille	lb	kg	bte†
PF200P	2″	10,3	4,7	3

0-30

0-100

0,22 0,1

0,22 0,1

GAGEO-30BOTTOM

GAGEO-100BOTTOM

À l'unité

Sans drain

Jauge non-incluse

NPT

#Modèle	Taille	Po	ids	Qté/
#Wodele	laille	lb	kg	bte†
PF200N-ND	2″	4,8	2,2	6

Jauge non-incluse

Sweat

Owcat					
#Modèle	Taille	Poids		Qté/	
#Modele	laille	lb	kg	bte†	
PF200S-ND	2″	4,7	2,2	6	

Jauge non-incluse

Press

F1633					
#Modèle	Taille	Poids		Qté/	
#Wodele		lb	kg	bte†	
PF200P-ND	2″	5,1	2,3	6	

[†]Ce produit est vendu à l'unité, mais il peut également être vendu en boîte maîtresse.

#Modèle	PSI	Poids	
#Modele	PSI	lb	kg
GAGEO-30BOTTOM	0-30	0,22	0,1
GAGEO-100BOTTOM	0-100	0,22	0,1

VALVES

ENSEMBLE DE VALVES TOUT-EN-UN POUR CHAUFFE-EAU INSTANTANÉ AVEC RÉSERVOIR D'EXPANSION

L'ensemble de valves tout-en-un de Calefactio est conçu pour des chauffe-eaux de moins de 2 gallons. Il comprend deux valves incluant des drains, une valve de surpression ainsi qu'un réservoir d'expansion.

Le réservoir d'expansion sert à absorber l'eau dont le volume est accru en raison du chauffage, ce qui maintient la pression du circuit sous le point de consigne de la valve de surpression. Il agit également comme un antibélier ou amortisseur afin d'absorber une variation brusque de la vitesse d'un liquide à la suite d'une fermeture rapide d'une vanne.

#Modèle

TK075NTE

Avantages

Valves

- ▶ Joint sécure
- Sans plomb
- Compacte
- ▶ Facilite l'entretien du chauffe-eau grâce aux drains dédiés
- Valve de surpression incluse (PRV)
- Identification facile des valves d'eau chaude et froide

Réservoir d'expansion

- Antibélier
- L'eau n'entre pas en contact avec la coquille du réservoir
- Aucune rouille ou corrosion de la coquille du réservoir
- ► Construction soudée et robuste
- ▶ Vessie d'EPDM
- Revêtement résistant

Précharge en usine 50 PSI

L'ensemble contient

Réservoir d'expansion Modèle #HGTE1

Connexion	½″ MNPT
Volume	0,04 gal (0,16 L)
Précharge	50 PSI
Température d'opération max.	180°F (82°C)
Pression de service max.	150 PSI

Valves pour chauffe-eau instantané Modèle #TK075N

Connexion	¾" FNPT
Température maximale	180°F (82°C)
Pression maximale	150 PS

Valve de surpression Modèle #PRV075-150

Connexion	¾″ MNPT
Température maximale	180°F (82°C)
Pression maximale	150 PSI
Puissance de chaleur	200 000 BTU

Raccord en T

VALVES POUR CHAUFFE-EAU

INSTANTANÉ

Chaque ensemble de valves pour chauffe-eau instantané de Calefactio comprend deux valves avec drain ainsi qu'une valve de surpression de 150 PSI. Certains ensembles sont également offerts avec une valve de surpression de 30 PSI.

Grâce à ses drains intégrés ainsi qu'à ses poignées colorées, elles simplifient l'entretien du système. Elles sont fabriquées en laiton et certifiées sans plomb ce qui les rendent solides et durables pour un rendement fiable à long terme.

Caractéristiques

- ▶ Joint sécure
- ► Sans plomb
- ▶ Compacte
- ► Facilite l'entretien du chauffe-eau grâce aux drains dédiés
- ▶ Valve de surpression incluse (PRV)
- ▶ Identification facile des valves d'eau chaude et froide

Spécifications techniques

- ▶ Bâti en laiton
- ► Température maximale : 180°F

#Modèle	Connex.	Lar	geur	Hau	teur	Po	ids	Qté/
#Wodele	Connex.	ро	mm	ро	mm	lb	kg	bte†
TK075N	34" NPT	3	76,6	4	102	3,3	1,5	12
TK075P	¾" PRESS	3	76,6	4	102	3,3	1,5	12
TK075S	¾" SWEAT	3	76,6	4	102	3,1	1,4	12
TK075N-30*	34" NPT	3	76,6	41/2	114	4,7	2,1	12

^{*}Valve de surpression de 30 PSI.

[†]Ce produit est vendu à l'unité, mais il peut également être vendu en boîte maîtresse.

### DI		Lar	geur	Hau	teur	Po	ids	Qté/
#Modèle	Connex.	ро	mm	ро	mm	lb	kg	bte†
TK100N	1" NPT	3	76,6	41/2	114	4,4	2,0	8
TK100N-30*	1" NPT	3	76,6	41/2	114	4,7	2,1	8

^{*}Valve de surpression de 30 PSI

VALVE DE SURPRESSION

#Modèle	Connexion	Largeur	Hau	teur	Pression	Température	Puissance de chaleur max.	Certification	Poi	ids
#Wodele	Connexion	po mm	ро	mm	max.	max.	à l'entrée	Certification	lb	kg
PRV075-30	¾″ MNPT	2,4 61	2,6	81	30 PSI	300°F (149°C)	419 000 BTU	ASME IV • ANSI Z21.22 • NSF 372 CSA 4.4 • CRN.0G21972.2CL	0,66	0,3
PRV075-150	¾″ MNPT	2,6 66	3,2	66	150 PSI	210°F (99°C)	200 000 BTU	CSA 4.4 • ANSI Z21.22	0,44	0,2

VALVE DE DRAINAGE

Valve à bille pour drainage

#Modèle	0	Po	ids	Qté/ bte†
#IVIOGEIE	Connex.	lb	kg	bte†
DBV034N	3⁄4″	0,7	0,32	8

 $^{\dagger}\text{Ce}$ produit est vendu à l'unité, mais il peut également être vendu en boîte maîtresse.

Valve de drainage

#Modèle	Connex.	Po	ids
#IVIOUEIE	Connex.	lb	kg
DV12	1/2"	0,2	0,1
DV34	3/4"	0,2	0,1

Valve à bille avec drain à haut débit

Nouveau

Oweat			
#Modèle	Connex.	Po	ids
#Wodele	Connex.	lb	kg
BD075S	3/4″	1,0	0,4
BD100S	1″	1,3	0,6
BD125S	1¼″	2,0	0,9
BD150S	1½″	2,9	1,3

Press

#Modèle	Connex.	Po	ids
#IVIOUEIE	Connex.	lb	kg
BD075P	3/4″	1,0	0,5
BD100P	1″	1,4	0,6
BD125P	1¼″	2,1	1,0
BD150P	1½″	2,9	1,3

[†]Ce produit est vendu à l'unité, mais il peut également être vendu en boîte maîtresse.

RÉGULATEURS DE DÉBIT

FIXES

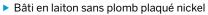
INDUSTRIELS

Découvrez notre gamme complète de régulateurs de débit conformes à la norme NSF61.

FIXES

Caractéristiques

- ▶ Bâti en laiton sans plomb plaqué nickel ou en acier inoxydable 316
- ▶ Offerts en cinq formats et plus de 30 débits




																	Ga	llon	par	mir	nute	(Gl	PM)														
#Modèle	Connex.	Haut.	GPM	0,13	0,19	0,25	0,35	0,50	0,75	1,00	1,30	1,50	1,75	2,00	2,50	3,00	3,50	4,00	4,50	5,00	00'9	6,50	7,00	8,00	9,00	10,0	12,0	13,0	13,5	15,0	18,0	20,0	24,0	25,0	26,0	30,0	Poids (oz)
Α [†]	3%" FNPT	1¾″	0,13 à 4	•	•	•	•	•	•	•		•	•	•		•																					3,00
B⁺	½″ FNPT	2″	0,25 à 9			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•												3,60
C [†]	¾″ FNPT	21/4"	0,25 à 30			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•		•	•	6,00
Χ [†]	1" FNPT	2¾″	2,5 à 30							•		•		•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•		•	•	10,8
Ζ [†]	1½″ FNPT	2¾″	5 à 30																		•		•	•	•	•	•	•	•	•	•		•		•	•	22,6
SSA*	%" FNPT	1¾″	0,13 à 4	•	•	•	•	•	•	•	•		•	•	•			•																			2,90
SSB*	½″ FNPT	2″	0,25 à 9			•		•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•												3,30
SSC*	¾″ FNPT	21/4"	0,25 à 30			•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	5,50
SSX*	1" FNPT	2¾″	2,5 à 30							•		•		•	•		•	•	•	•	•		•	•	•	•		•	•	•	•	•	•		•	•	9,00
SSZ*	1½" FNPT	2¾″	5,0 à 30																	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	21,0

[†] Bâti en laiton sans plomb plaqué nickel * Bâti en acier inoxydable 316

UNION

Caractéristiques

																	Ga	llon	par	mir	ute	(GP	M)														D
#Modèle	Connex.	Haut.	GPM	0,13	0,19	0,25	0,35	0,50	0,75	1,00	1,30	1,50	1,75	2,00	2,50	3,00	3,50	4,00	4,50	5,00	00'9	6,50	7,00	8,00	9,00	10,0	12,0	13,0	13,5	15,0	18,0	20,0	24.0	25,0	26,0	30,0	Poids (oz)
AU	3/8" FNPT	11/8″	0,13 à 4	•	•	•	•	•		•		•	•	•	•	•		•																			0,02
BU	½″ FNPT	21/8"	0,25 à 9			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•												4,00
CU	¾″ FNPT	2¼″	0,25 à 30			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6,40
XU	1" FNPT	2¾″	2,5 à 30							•		•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•			•			12,8

Demandez-nous vos pièces sur mesure (OEM) à info@calefactio.com

Data of acion mongaable 010

INDUSTRIELS

Caractéristiques

- Bâti en laiton sans plomb plaqué nickelOfferts en cinq formats et plus de 30 débits

																		Gall	lon	par	mir	iute	(GI	PM)																
#Modèle	Connexion	Haut	GPM	5,00	00'9	6,50	7,00	8,00	9.00	10.0	12.0	13.0	13,5	15,0	18,0	20,0	24,0	25,0	26,0	30,0	35,0	40,0	45,0	50,0	55,0	0,09	65,0	70,0	75,0	0,08	85,0	0,06	95,0	100	105	110	115	120	Po (o	
Р	1¼"×1¼" MNPT	3″	5 à 30	•		•			•	•	•		•			•	•		•																				1	0
Т	1½"×1½" MNPT	3″	5 à 30	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•																			1	3
F	2"×2" MNPT	3″	10 à 30							•	•	•	•	•	•	•	•	•	•	•																			1	9
Н	2½"×2½" MNPT	4″	30 à 90																	•		•	•	•	•	•	•	•	•	•	•	•							3	2
K	3"×3" MNPT	4″	30 à 120																	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•				5	1

SPÉCIALISÉS

Pour irrigation

										Ga	llon	par	mir	ute	(GP	M)							D : 1
#Modèle	Connexion	Hauteur	GPM	0,50	0,75	1,00	1,30	1,50	1,75	2,00	2,50	3,00	3,50	4,00	4,50	5,00	6,00	6,50	7,00	8,00	9,00	10,0	Poids (oz)
Υ	34" MNPT × 34" FNPT	1½″	1 à 10			•		•		•	•	•	•	•		•	•		•	•	•	•	4,5 oz

RÉSERVOIRS D'EXPANSION ASME

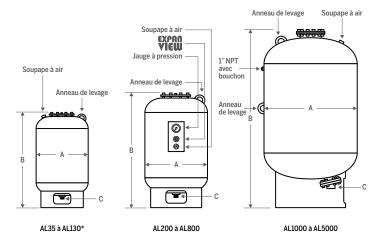
CHAUFFAGE

POTABLE

Utilisez notre outil de sélection en ligne pour choisir la bonne taille de réservoir. calefactio.com/outil-de-selection

SÉRIE AL

Vessie remplaçable


Connexion par le bas

Caractéristiques

- ► Facteur d'acceptance de 100 %
- ▶ Vessie de butyle remplaçable
- ► Conception conforme ASME, section VIII
- L'eau demeure séparée de façon permanente de l'air
- ▶ Préchargé d'air en usine ; pression réglable sur le chantier

Spécifications techniques

- Fini extérieur en apprêt peint
- ► Température maximale de 240°F (115°C)
- ▶ Préchargé d'air en usine à 12 PSI (83 kPa)
- ▶ Pression de service de 125 PSI (862 kPa)
- Pressions maximales de 150, 175, 250 et 300 PSI également disponibles sur demande

*Jauge à pression disponible en option.

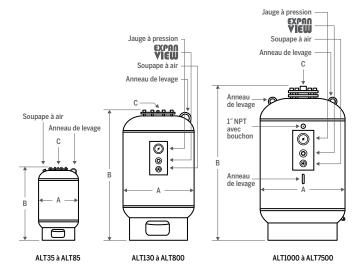
Indicateur d'intégrité du réservoir qui change de couleur en présence d'une fuite.

Modèle AL200 à AL800 illustré

	Volu	ıme		Dime	nsion			exion PT	Po	ids
#Modèle				A	ı	В	(
	gal	L	ро	mm	ро	mm	ро	mm	lb	kg
AL35	10	38	12	305	28	711	1	25	54	24
AL50	13	50	12	305	36	914	1	25	67	30
AL85	23	87	16	406	37	940	1	25	90	41
AL130	35	132	16	406	50	1270	1	25	115	52
AL200	53	200	24	610	43	1092	1½	38	210	95
AL300	79	299	24	610	55	1397	1½	38	225	102
AL400	106	401	30	762	49	1245	1½	38	300	136
AL500	132	500	30	762	57	1448	2	50	335	152
AL600	158	598	30	762	65	1651	2	50	360	163
AL800	211	798	32	813	76	1930	2	50	475	215
AL1000	264	999	36	914	87	2210	3	76	552	250
AL1200	317	1200	36	914	98	2489	3	76	679	308
AL1400	370	1400	36	914	111	2819	3	76	688	312
AL1600	422	1597	48	1219	84	2134	3	76	1046	474
AL2000	528	1999	48	1219	86	2184	3	76	1150	522
AL2500	660	2498	48	1219	104	2642	4	102	1444	655
AL3000-L	792	2998	48	1219	124	3150	4	102	1658	752
AL3000-S	792	2998	60	1524	83	2108	4	102	1868	847
AL4000	1056	3997	60	1524	105	2667	4	102	2238	1015
AL5000	1320	4996	60	1524	128	3251	4	102	3768	1709

SÉRIE ALT

Vessie remplaçable


Connexion par le haut

Caractéristiques

- ▶ Facteur d'acceptance de 100 %
- ▶ Vessie de butyle remplaçable
- ► Conception conforme ASME, section VIII
- L'eau demeure séparée de façon permanente de l'air
- ▶ Préchargé d'air en usine; pression réglable sur le chantier

Spécifications techniques

- Fini extérieur en apprêt peint
- ► Température maximale de 240°F (115°C)
- ▶ Préchargé d'air en usine à 12 PSI (83 kPa)
- ▶ Pression de service de 125 PSI (862 kPa)
- ➤ Pressions maximales de 150, 175, 250 et 300 PSI également disponibles sur demande

Indicateur d'intégrité du réservoir qui change de couleur en présence d'une fuite.

Modèle ALT130 à ALT800 illustré

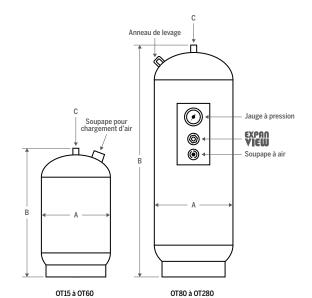
	Volu	ıme		Dime	nsion			exion PT	Po	ids
#Modèle				A		В	(С		
	gal	L	ро	mm	ро	mm	ро	mm	lb	kg
ALT35	10	38	12	305	28	711	1	25	54	24
ALT50	13	50	12	305	36	914	1	25	67	30
ALT85	23	87	16	406	37	940	1	25	90	41
ALT130	35	132	20	508	37	940	3/4	19	125	57
ALT200	53	200	24	610	43	1092	3/4	19	210	95
ALT300	79	299	24	610	55	1397	3/4	19	225	102
ALT400	106	401	30	762	49	1245	3/4	19	300	136
ALT500	132	500	30	762	57	1448	3/4	19	335	152
ALT600	158	598	30	762	65	1651	3/4	19	360	163
ALT800	211	798	32	813	76	1930	3/4	19	475	215
ALT1000	264	999	36	914	87	2210	1½	38	552	250
ALT1200	317	1200	36	914	98	2489	1½	38	679	308
ALT1400	370	1400	36	914	111	2819	1½	38	688	312
ALT1600	422	1597	48	1219	84	2134	1½	38	1046	474
ALT2000	528	1999	48	1219	86	2184	1½	38	1150	522
ALT2500	660	2498	48	1219	104	2642	2	51	1444	655
ALT3000-L	792	2998	48	1219	124	3150	2	51	1658	752
ALT3000-S	792	2998	60	1524	83	2108	2	51	1868	847
ALT3500	926	3505	54	1372	83	2108	2	51	2369	1075
ALT4000	1056	3997	60	1524	105	2667	2	51	2238	1015
ALT5000	1320	4996	60	1524	128	3251	2	51	2617	1187
ALT7500	1981	7499	72	1829	131	3327	3	76	3768	1709

SÉRIE OT

Vessie fixe

Connexion par le haut

Caractéristiques


- ▶ Vessie non remplaçable en EPDM ultra résistant
- ► Conception conforme ASME, section VIII
- ▶ Préchargé d'air en usine ; pression réglable sur le chantier
- L'eau demeure séparée de façon permanente de l'air pendant toute la durée de vie utile de l'installation

Spécifications techniques

- Fini extérieur en apprêt peint
- ► Température maximale de 240°F (115°C)
- Préchargé d'air en usine à 12 PSI (83 kPa)
- ▶ Pression de service
 - Modèles OT-15 à OT-180: 150 PSI (1034 kPa)
 - Modèles OT-200 à OT-280: 125 PSI (862 kPa)
- ▶ Pressions maximales de 175, 250 et 300 PSI également disponibles

Modèle OT200 à OT280 illustré

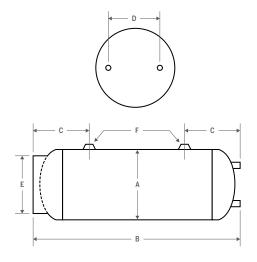
Indicateur d'intégrité du réservoir qui change de couleur en présence

		ne du	Volu			Dime	nsion			exion PT	Po	ids
#Modèle	rése	rvoir	d'acc	cept.		A	ı	В	(
	gal	L	gal	L	ро	mm	ро	mm	ро	mm	lb	kg
OT15	7,8	30	6,3	24	12	305	21,5	533	3/4	19	40	16,2
OT20	11	42	8,8	33	12	305	26,5	660	3/4	19	47	18,3
OT40	25	95	20,2	76	16	406	35	885	1	25	78	30,7
ОТ60	35	132	28	106	16	406	46	1165	1	25	96	37,7
08TO	45	170	36	136	20	508	38	965	1	25	148	67
OT100	60	227	48,5	184	20	508	49	1245	1	25	175	79
OT120	70	265	56,5	214	24	610	46	1168	1½	38	259	117
OT144	80	303	65	246	24	610	49	1245	11/2	38	268	122
OT180	90	341	73	276	24	610	52	1321	1½	38	283	128
OT200	115	435	93	352	24	610	66	1676	1½	38	325	147
OT240	140	530	113,5	430	24	610	78	1981	1½	38	362	164
OT260	158	598	128	485	30	762	63	1600	1½	38	591	268
OT280	211	799	171	647	30	762	81	2032	1½	38	752	341

SÉRIE NA

Sans vessie

Sans membrane


Caractéristiques

- ► Conception conforme ASME, section VIII
- ► Anneau de base pour entreposage vertical
- ▶ Raccord pour indicateur de niveau en verre dans la partie supérieure
- ▶ Sangles disponibles pour installation suspendue
- Des réservoirs en acier galvanisés sont également offerts

Spécifications techniques

- ► Construction en acier
- ► Température de conception maximale: 450°F
- ▶ Pression de conception maximale
 - Modèles 12NA33 à 20NA78: 150 PSI
 - Modèles 24NA65 à 42NA96: 125 PSI

	Val							Dime	nsion						D-	داء:
#Modèle	Volu	ıme	1	A	E	3	([)	E		F	:	PO	ids
	gal	L	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
12NA33	15	57	12	305	33	838	7	203	8	203	11½	292	1	25	44	20
12NA51	24	91	12	305	51	1295	7	203	8	203	11½	292	1	25	62	28
14NA48	30	114	14	356	48	1219	10	254	10	254	11½	292	1	25	72	33
14NA63	40	151	14	356	63	1600	10	254	10	254	11½	292	1	25	92	42
16NA72	60	227	16	406	72	1829	10	254	12	305	11½	292	1	25	120	54
20NA62	80	303	20	508	621/2	1587	10	254	16	406	18	457	1	25	136	62
20NA78	100	379	20	508	78	1981	10	254	16	406	18	457	1	25	168	76
24NA65	120	454	24	610	65	1651	111//8	283	20	508	18	457	1	25	218	99
24NA72	135	511	24	610	72	1829	111/8	283	20	508	18	457	1	25	238	108
30NA62	175	662	30	762	621/4	1581	13½	343	22	559	24	610	1½	38	338	153
30NA77	220	833	30	762	77	1956	13½	343	22	559	24	610	1½	38	368	167
30NA84	240	908	30	762	84	2134	13½	343	22	559	24	610	1½	38	394	179
30NA105	305	1155	30	762	105¾	2686	13½	343	22	559	24	610	1½	38	486	220
36NA72	295	1117	36	914	72	1829	14¾	375	28	711	30	762	1½	38	502	227
36NA93	400	1514	36	914	921/2	2349	14¾	375	28	711	30	762	1½	38	645	292
36NA120	505*	1912	36	914	120	3048	14¾	375	28	711	n.d.	n.d.	1½	38	810	367
42NA96	525*‡	1987	42	1067	96	2438	18	457	28	711	n.d.	n.d.	11/2	38	895	406

'Les réservoirs de 505 et 525 gallons ne sont pas munis d'un anneau de base ‡ Les réservoirs de 525 gallons sont dotés d'un regard de 11 po sur 15 po.

SÉRIE BFA

Vessie fixe

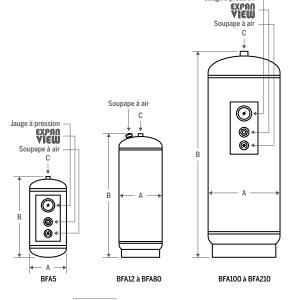
Connexion par le haut

Caractéristiques

- ► Construction et conforme ASME, chapitre VIII
- Vessie fixe d'EPDM ultra résistant approuvé CSA conforme à la norme NSF61
- L'eau demeure séparée de façon permanente de l'air
- ▶ Préchargé d'air en usine; pression réglable sur le chantier

Spécifications techniques

- ► Raccord en acier inoxydable
- ► Fini extérieur en apprêt peint
- ► Température maximale de 240°F (115°C)
- ▶ Préchargé d'air en usine à 40 PSI (275 kPa)
- ▶ Pression de service de 150 PSI (1034 kPa)
- ▶ Pressions maximales de 175, 250 et 300 PSI également disponibles


Jauge à pression

Modèle BFA100 à BFA210 illustré

Indicateur d'intégrité du réservoir qui change de couleur en présence d'une fuite.

		ıme		ıme		Dime	nsion			exion PT	Po	ids	
#Modèle	to	tal	d'acce	ptance		A	ı	В	(2			
	gal	L	gal	L	ро	mm	ро	mm	ро	mm	lb	kg	
BFA5	3,5	13	2,3	9	10	254	14	356	3/4	19	22	10	
BFA12	5	19	3,3	12	12	305	15	380	3/4	19	31	14	
BFA20	8	30	5,3	20	12	305	21	535	3/4	19	40	18	
BFA30	15	57	10	38	16	406	25	630	1	25	59	27	
BFA42	22	83	14,5	55	16	406	32	810	1	25	72	33	
BFA60	26	98	17,5	66	16	406	35	885	1	25	78	35	
BFA80	35	132	23,5	89	16	406	46	1165	1	25	97	44	
BFA100	45	170	30	114	20	508	38	965	1	25	148	67	
BFA125	60	227	40	151	20	508	49	1245	1	25	175	79	
BFA160	70	265	47	178	24	610	46	1168	1½	38	259	117	
BFA180	80	303	53	201	24	610	49	1245	1½	38	268	122	
BFA210	90	341	60	227	24	610	52	1321	1½	38	283	128	

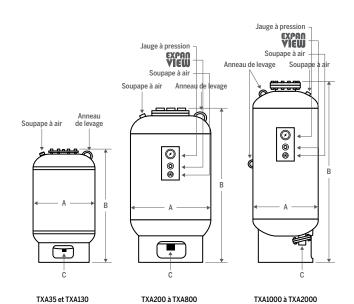
RÉSERVOIRS D'EXPANSION ASME

SÉRIE TXA

Vessie remplaçable

Connexion par le bas

Caractéristiques


- ▶ Vessie remplaçable de butyle ultra résistant approuvé CSA conforme à la norme NSF61
- ► Construction conforme ASME Section VIII
- L'eau demeure séparée de l'air de façon permanente pour toute la durée de vie du réservoir
- ▶ Préchargé d'air en usine; pression réglable sur le chantier

Spécifications techniques

- ► Connexion: acier inoxydable
- ► Température maximale de conception: 240°F (115°C)
- ▶ Préchargé d'air en usine à 40 PSI
- ▶ Pression maximale de conception : 150 PSI
- ▶ Pressions maximales de 175, 250 et 300 PSI également disponibles

Modèle TXA1000 à TXA2000 illustré

		ume		Dime	nsion			exion PT	Poi	ids
#Modèle	to	tal		A		В	(
	gal	L	ро	mm	ро	mm	ро	mm	lb	kg
TXA35	10	38	12	305	28	711	1	25	54	24
TXA50	13	49	12	305	36	914	1	25	67	30
TXA85	23	87	16	406	37	940	1	25	90	41
TXA130	35	132	16	406	50	1283	1	25	115	52
TXA200	53	201	24	610	43	1092	1½	38	210	95
TXA300	79	299	24	610	55	1397	1½	38	225	102
TXA400	106	401	30	762	49	1245	1½	38	300	136
TXA500	132	500	30	762	57	1448	2	51	335	152
TXA600	158	598	30	762	65	1651	2	51	360	163
TXA800	211	799	32	813	76	1930	2	51	475	215
TXA1000	264	999	36	914	87	2210	3	76	552	250
TXA1200	317	1200	36	914	98	2489	3	76	679	308
TXA1400	370	1401	36	914	111	2819	3	76	688	312
TXA1600	422	1597	48	1219	84	2134	3	76	1046	474
TXA2000	528	1999	48	1219	96	2438	3	76	1150	522

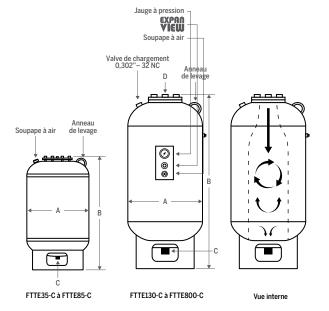
RÉSERVOIRS D'EXPANSION ASME

SÉRIE FTTE-C

Vessie remplaçable

À flot continu

Caractéristiques


- ► Coquille: acier au carbone
- ▶ Têtes: acier au carbone
- ► Connexions: acier inoxydable
- Vessie de butyle ultra résistant approuvé NSF
- L'eau demeure séparée de l'air de façon permanente
- ▶ Préchargé d'air en usine; pression réglable sur le chantier

Spécifications techniques

- ► Température maximale de conception: 240°F (115°C)
- ▶ Préchargé d'air en usine à 40 PSI
- ▶ Pressions maximales de conception: 150 psig, 200 et 250 psig disponibles

Fonctionnement

La conception unique de la FTTE-C favorise le mélange des fluides en leur permettant de traverser entièrement le réservoir. Ce mouvement à l'intérieur de la vessie évite que l'eau stagne, prévenant ainsi la croissance potentielle de colonie de bactéries nocives.

Modèle FTTE130-C à FTTE800-C illustré

	Val	ume		Dime	nsion			Conn	exion		Do	ids
#Modèle	VOIL	unie		A	ı	В	([)	PO	ius
	gal	L	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
FTTE35-C	10	38	12	305	23.5	584	1	25	1	25	54	24
FTTE50-C	13	50	14	356	24	610	1	25	1	25	67	30
FTTE85-C	23	87	16	406	37	940	1	25	1	25	90	41
FTTE130-C	35	132	20	508	37	940	1	25	1	25	115	52
FTTE200-C	53	201	24	610	43	1092	1½	38	1½	38	210	95
FTTE300-C	79	299	24	610	55	1397	1½	38	1½	38	225	102
FTTE400-C	106	401	30	762	49	1245	1½	38	1½	38	300	136
FTTE500-C	132	500	30	762	57	1448	2	51	2	51	335	152
FTTE600-C	158	598	30	762	65	1651	2	51	2	51	360	163
FTTE800-C	211	799	32	813	76	1930	2	51	2	51	475	215

Indicateur d'intégrité du réservoir qui change de couleur en présence d'une fuite.

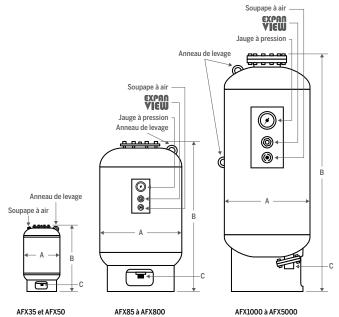
HYDRO-PNEUMATIQUES

SÉRIE AFX

Vessie remplaçable

Connexion par le bas

Caractéristiques


- ▶ Vessie de butyle ultra résistant approuvé FDA
- ► Conception conforme ASME, section VIII
- Préchargé d'air en usine; pression réglable sur le chantier
- ldéal pour systèmes de surpression
- ▶ Réservoir d'emmagasinage pour eau potable et de puits

Spécifications techniques

- Fini extérieur en apprêt peint
- ► Température maximale de 240°F (115°C)
- ▶ Préchargé d'air en usine à 30 PSI
- Pression standard de 125 PSI

Modèle AFX85 à AFX800 illustré

Indicateur d'intégrité du réservoir qui change de couleur en présence d'une fuite

	Volu	ıme		Dime	nsion		Conne	x. NPT	Po	ida
#Modèle	to	tal		A	ı	В	(PO	ius
	gal	L	ро	mm	ро	mm	ро	mm	lb	kg
AFX35	10	38	12	305	23,5	584	3/4	19	54	24
AFX50	13	49	14	356	24	610	3/4	19	67	30
AFX85	23	87	16	406	37	940	1	25	90	41
AFX130	35	133	20	508	37	940	1	25	115	52
AFX200	53	201	24	610	43	1092	1½	38	210	95
AFX300	79	299	24	610	55	1397	1½	38	225	102
AFX400	106	401	30	762	49	1245	1½	38	300	136
AFX500	132	500	30	762	57	1448	2	51	335	152
AFX600	158	598	30	762	65	1651	2	51	360	163
AFX800	211	799	32	813	76	1930	2	51	475	215
AFX1000	264	999	36	914	82	2083	3	76	552	250
AFX1200	317	1200	36	914	94	2387	3	76	679	308
AFX1400	370	1401	36	914	107	2718	3	76	688	312
AFX1600	422	1597	48	1219	84	2133	3	76	1046	474
AFX2000	528	1999	48	1219	97	2464	3	76	1150	522
AFX2500	660	2498	48	1219	116	2946	4	102	1444	655
AFX3000-L	792	2998	48	1219	134	3404	4	102	1658	752
AFX3000-S	792	2998	60	1524	97	2464	4	102	1868	847
AFX4000	1056	3997	60	1524	123	3124	4	102	2238	1015
AFX5000	1320	4997	60	1524	146	3708	4	102	3768	1709

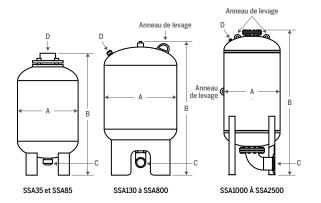
HYDRO-PNEUMATIQUES

SÉRIE SSA

Vessie remplaçable

Antibélier pour eau potable

Caractéristiques


- ▶ Vessie: butyle ultra résistant
- ► Construction conforme ASME Section VIII
- L'eau demeure séparée de l'air de façon permanente
- ▶ Préchargé d'air en usine ; pression réglable sur le chantier
- Contrôle efficacement les coups de bélier et les chocs qui se produisent lorsque le système est démarré/éteint
- Muni de connexions pour grands systèmes d'eau conçues pour accepter rapidement des surtensions de pression d'eau avec baisse de pression minime

► Température maximale de conception: 240°F (115°C)

▶ Préchargé d'air en usine à 30 PSI

▶ Pression maximale de conception: 250 PSI

Connexion vers le bas pour tous les modèles sauf SSA35 et SSA50

	Val	ume					Dime	nsion				Po	ids
#Modèle	VOII	unie		A	ı	В	(2	Valve de		E	арр	rox.
	gal	L	ро	mm	ро	mm	ро	mm	charge D	ро	mm	lb	kg
SSA35	10	38	12	305	26	660	21/2	64		9	229	55	25
SSA50	13	49	14	356	26	660	21/2	64		10	254	65	30
SSA85	23	87	16	406	30½	775	3	76		12	305	134	61
SSA130	35	132	20	508	30½	775	3	76		16	406	175	79
SSA200	53	201	24	610	46½	1181	4	102		20	508	250	113
SSA300	79	299	24	610	58½	1486	4	102		20	508	341	155
SSA400	106	401	30	762	52½	1334	4	102	0.000#	24	610	430	195
SSA500	132	500	30	762	63	1600	6	152	0,302″	24	610	596	270
SSA600	158	598	30	762	71	1803	6	152	32 NC	24	610	653	296
SSA700	185	700	30	762	81½	2070	6	152	7,7 mm - 32 NC	24	610	726	329
SSA800	211	799	32	813	82	2083	6	152	32 NO	26	660	902	409
SSA1000	264	999	36	914	85	2159	10	254		-	-	1147	520
SSA1200	317	1199	36	914	107	2718	10	254		-	-	1303	591
SSA1400	370	1401	36	914	119	3023	10	254		-	-	1447	656
SSA1600	422	1597	48	1219	92	2337	10	254		-	-	1888	856
SSA2000	528	1999	48	1219	105	2667	10	254		-	-	2105	955
SSA2500	660	2498	48	1219	122	3099	10	254		-	-	2425	1100

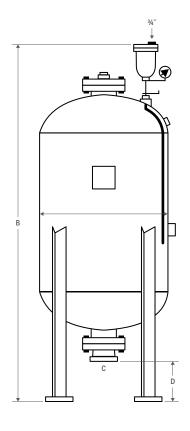
Note: Disponibles avec fixation de montage

HYDRO-PNEUMATIQUES

SÉRIE ABM

Vessie remplaçable

Antibélier municipal


Caractéristiques

- ▶ Vessie remplaçable de butyle ultra résistant
- ► Conception conforme ASME, section VIII
- ▶ Pour utilisation dans les systèmes d'eaux usées
- ▶ Équipé d'un évent à biogaz et manomètre

Spécifications techniques

► Température maximale: 240°F (115°C)

▶ Pression maximale de conception: 150 PSI

	Vol	ume				Dime	nsion				De	:
#Modèle	to	tal		A		В	(С	ı	D	Po	ias
	gal	L	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
ABM160	43	163	24	610	60	1524	6	152	12	305	250	114
ABM250	66	250	24	610	72	1829	6	152	12	305	300	136
ABM400	106	401	24	610	98	2489	8	203	16	406	365	166
ABM600	158	598	30	760	96	2438	8	203	16	406	590	268
ABM1000	264	999	36	914	101	2565	10	254	24	610	900	409
ABM1600	423	1601	48	1220	105	2667	12	305	30	760	1610	731
ABM2000	528	1999	48	1220	119	3023	12	305	30	760	1810	823

HYDRO-PNEUMATIQUES NON-CODÉ

SÉRIE FX

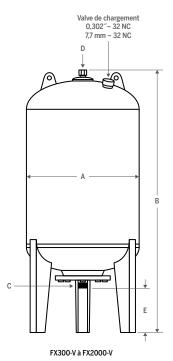
Vessie remplaçable

Réservoir d'expansion NON-ASME

Caractéristiques

- ► Réservoir d'expansion NON-ASME
- ► Vessie: EPDM ultra résistant
- L'eau demeure séparée de l'air de façon permanente
- ▶ Préchargé d'air en usine; pression réglable sur le chantier
- Contrôle efficacement les coups de bélier et les chocs qui se produisent lorsque le système est démarré/éteint
- Muni de connexions pour grands systèmes d'eau conçues pour accepter rapidement des surtensions de pression d'eau avec baisse de pression minime

Spécifications techniques


► Température maximale de conception: 240°F (115°C)

▶ Pression maximale de conception: 150 PSIG

▶ Préchargé d'air en usine à 30 PSI

▶ Vessie: EPDM ultra résistant

► Connexion: acier inoxydable

	Val	ıme		Dime	nsion			Conn	exion			-	De	oids
#Modèle	VOII	ıme		A		В	(С	ı	D		L	PC	nus
	gal	L	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
FX300-V	80	303	25	635	55	1397	11/2	38	1/2	13	8,5	216	141	70,0
FX500-V	132	500	31	787	61	1549	1½	38	1/2	13	9	229	265	120,2

ACCESSOIRES

Chevalets

Pour installation horizontale au plancher.

#Modèle	Diamètre
SAD12	12″
SAD14	14″
SAD16	16″
SAD18	18″
SAD20	20″
SAD24	24″
SAD30	30″
SAD36	36″
SAD48	48″

Sangles

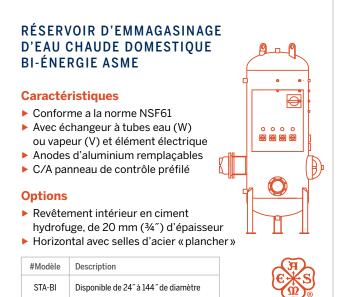
Sangle pour fixer le réservoir.

#Modèle	Diamètre
STRAP12	12″
STRAP14	14″
STRAP16	16″
STRAP18	18″
STRAP20	20″
STRAP24	24″
STRAP30	30″
STRAP36	36″
STRAP48	48″

Supports antisismiques

Les supports antisismiques sont conçus pour protéger les réservoirs en cas de séisme.

#Modèle	Largeur
BKT2	2″
BKT4	4″

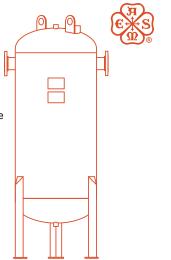


RÉSERVOIRS SPÉCIALISÉS ASME

Spécifications techniques

- ▶ Construit selon le code ASME, section VIII, DIV. 1
- ► Conforme à la norme CSA B.51
- ▶ Disponible verticalement (V) ou horizontalement (H)
- ▶ Construction d'acier au carbone ou acier inoxydable
- ▶ Conception 125 PSI (862 KPa), 150 PSI (1 034 KPa), 200 PSI (1 379 KPa) et plus sur demande
- ▶ Fini extérieur : nettoyage extérieur au solvant et application d'une couche d'apprêt gris

RÉSERVOIR TAMPON ASME


Caractéristiques

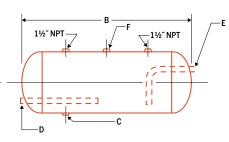
- ▶ Construit selon le code ASME, section VIII, DIV. 1
- ► Conforme à la norme CSA B.51
- ▶ Disponible verticalement (V) ou horizontalement (H)
- ▶ Construction d'acier au carbone ou acier inoxydable
- Conception 125 PSI (862 KPa), 150 PSI (1034 KPa), 200 PSI (1379 KPa) et plus sur demande
- ▶ Fini extérieur: nettoyage extérieur au solvant et application d'une couche d'apprêt gris

Options

- ► Horizontal avec selles d'acier « plancher »
- ▶ Raccord dans le bas du réservoir
- ▶ Déflecteur interne pour un mélange plus uniforme

#Modèle	Description
HBT	Disponible de 24" à 144" de diamètre

RÉSERVOIR ASME POUR CONDENSATION DE VAPEUR


EFTA

Construction

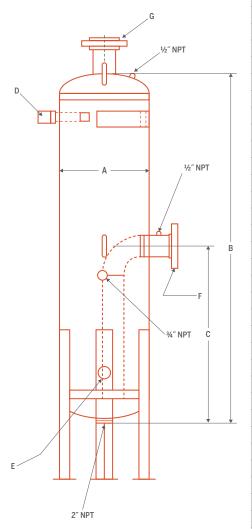
- ► Construit selon la norme ASME, section VIII, Div.1
- ► Température de conception: 450°F/232°C
- Extérieur peint avec une couche d'apprêt

	Capacité W.P.			Dimension											Diana	Outline			
#Modèle	Сар	acite	W.P.	Α		В		С		D	E	F		Poids		Dégag.	Options		
	gal	L	PSI	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg	pi ²	Entrée	Sortie	Regard d'accès
EFTA13	13	49,2	150	10	254	39	991	1	25	1½	38	2	51	79	36	2,71		1½″ 38,1 mm	
EFTA18	18	68,1	150	12	305	39	991	1	25	1½	38	2	51	94	43	3,25	11/″ 10″		
EFTA24	24	90,8	150	14	356	39	991	1	25	1½	38	2	51	108	49	3,79	1½"×18" avec 20 trous %"		
EFTA30	30	113,6	150	16	406	38	8 965 1½ 38 1½ 38	38	21/2	64	121	55	4,22	20 trous %		4"× 6" 101,6 mm			
EFTA48	48	181,7	125	18	457	48	1219	2	51	1½	38	21/2	64	168	76	6,00			152,4 mm
EFTA80	80	302,8	125	24	610	46	1168	2	51	2	51	3	76	214	97	7,67	2" 24"		
EFTA125	125	473,2	125	30	762	48	1219	21/2	64	2	51	3	76	285	129	10	2"× 24" avec 32 trous %"	2″ 50,8 mm	
EFTA180	180	681,4	125	36	914	48	1219	3	76	2	51	3	76	339	154	12	32 HOUS 78		

Conduit d'aspersion, tuyaux de barbotage et trous d'inspections sont disponibles comme équipement en option.

Pour obtenir un séparateur de plus grande capacité et de pression plus élevée, communiquez avec nous.

RÉSERVOIRS SPÉCIALISÉS ASME


RÉSERVOIR POUR PURGE DE VAPEUR ASME

Spécifications techniques

- ► Conforme au chapitre VIII du code ASME
- Extérieur peint d'apprêt
- ► Tête et coquille d'un matériel de ¾ po
- ► Température de conception de 450°F
- ▶ Pression d'opération de 125 psig

#Modèle	Pression de conception		Dime	nsion		Hauteur de la sortie			ur sous ssion	ď'e	rée au ide	Sortie d'eau froide		Purgeur sous pression	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	pour chaudière	A		ı	В		С		D	ı	E		F	G	
		ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm
EBDT21	20 à 50	14	356	66	1676	33	838	3/4	19	3/4	19	1½	38	2	51
EBDT22	20 à 50	14	356	66	1676	33	838	1	25	1	25	1½	38	2	51
EBDT23	20 à 50	14	356	66	1676	33	838	11/4	32	11/4	32	21/2	64	2	51
EBDT24	20 à 50	14	356	66	1676	33	838	1½	38	11/4	32	21/2	64	21/2	64
EBDT25	20 à 50	18	457	72	1829	36	914	2	51	2	51	4	102	3	76
EBDT26	20 à 50	20	508	72	1829	36	914	21/2	64	2	51	4	102	4	102
EBDT51	51 à 100	14	356	66	1676	33	838	3/4	19	1	25	1½	38	2	51
EBDT52	51 à 100	14	356	66	1676	33	838	1	25	11/4	32	2	51	21/2	64
EBDT53	51 à 100	18	457	72	1829	36	914	11/4	32	11/2	38	3	76	3	76
EBDT54	51 à 100	18	457	72	1829	36	914	1½	38	2	51	4	102	4	102
EBDT55	51 à 100	24	610	72	1829	36	914	2	51	21/2	64	4	102	5	127
EBDT56	51 à 100	30	762	78	1981	39	990	21/2	64	21/2	64	5	127	6	152
EBDT101	101 à 150	14	356	66	1676	33	838	3/4	19	1	25	2	51	21/2	64
EBDT102	101 à 150	14	356	66	1676	33	838	1	25	11/4	32	3	76	3	76
EBDT103	101 à 150	20	508	72	1829	36	914	11/4	32	11/2	38	3	76	4	102
EBDT104	101 à 150	24	610	72	1829	36	914	1½	38	2	51	4	102	5	127
EBDT151	151 à 200	14	356	66	1676	33	838	3/4	19	1	25	2	51	3	76
EBDT152	151 à 200	18	457	72	1829	36	914	1	25	11/4	32	21/2	64	4	102
EBDT153	151 à 200	24	610	72	1829	36	914	11/4	32	2	51	3	76	5	127
EBDT154	151 à 200	30	762	78	1981	39	990	1½	38	2	51	4	102	6	152
EBDT156	151 à 200	48	1219	78	1981	39	990	21/2	64	3	76	5	127	8	203
EBDT201	201 à 300	18	457	72	1829	34	863	3/4	19	11/4	32	2	51	4	102
EBDT202	201 à 300	24	610	72	1829	34	863	1	25	1½	38	21/2	64	5	127
EBDT203	201 à 300	30	762	78	1981	39	990	11/4	32	2	51	4	102	6	152
EBDT204	201 à 300	36	914	78	1981	39	990	1½	38	2½	64	4	102	6	152
EBDT205	201 à 300	48	1219	78	1981	39	990	2	51	3	76	5	127	8	203
EBDT206	201 à 300	54	1372	84	2134	42	1067	2½	64	3	76	6	152	10	254
EBDT301	301 à 400	20	508	72	1829	36	914	3/4	19	11/4	32	2½	64	4	102
EBDT302	301 à 400	24	610	72	1829	36	914	1	25	1½	38	3	76	5	127
EBDT304	301 à 400	42	1067	78	1981	39	990	1½	38	2½	64	4	102	8	203
EBDT305	301 à 400	54	1372	84	2134	42	1067	2	51	3	76	5	127	10	254
EBDT306	301 à 400	66	1676	84	2134	42	1067	21/2	64	4	102	6	152	10	254
EBDT401	401 à 500	20	508	72	1829	36	914	11/4	19	11/4	32	2½	64	4	102
EBDT404	401 à 500	48	1219	78	1981	39	990	11/2	38	1½	38	4		8	203
													102		
EBDT405	401 à 500	60	1524	84	2134	42	1067	2	51	3	76	5	127	10	254
EBDT406	401 à 500	72	1829	84	2134	42	1067	21/2	64	4	102	8	203	12	305
EBDT501	501 à 600	24	610	72	1829	36	914	3/4	19	11/4	32	2½	64	5	127
EBDT502	501 à 600	30	762	78	1981	39	990	1	25	1½	38	3	76	6	152
EBDT503	501 à 600	42	1067	78	1981	39	990	11/4	32	2½	64	4	102	8	203
EBDT504	501 à 600	54	1372	84	2134	42	1067	1½	38	2½	64	5	127	10	254
EBDT505	501 à 600	66	1676	84	2134	42	1067	2	51	3	76	6	152	12	305
EBDT506	501 à 600	72	1829	84	2134	42	1067	21/2	64	4	102	8	203	12	305
EBDT602	601 à 800	36	914	78	1981	39	990	1	25	1½	38	3	76	6	152
EBDT603	601 à 800	48	1219	78	1981	39	990	1¼	32	2	51	4	102	8	203
EBDT604	601 à 800	60	1524	84	2134	42	1067	1½	38	21/2	64	5	127	10	254
EBDT605	601 à 800	72	1829	84	2134	42	1067	2	51	3	76	6	152	12	305
EBDT606	601 à 800	72	1829	84	2134	42	1067	21/2	64	4	102	8	203	12	305

SÉPARATEURS D'AIR, DE SALETÉS ET HYDRAULIQUES ASME

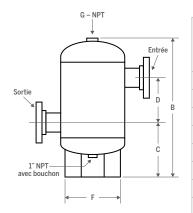
AVEC AIMANT

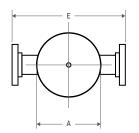
SÉPARATEURS D'AIR TANGENTIELS

ESPA

Sans crépine

Caractéristiques


► Conception conforme ASME, section VIII


Spécifications techniques

- ▶ Bâti en acier carbonisé
- ► Apprêt à l'oxyde noir
- ► Température maximale de conception: 232°C (450°F)
- ▶ Pression maximale de conception: 125 PSI
- ▶ Pressions de 150, 175, 200, 250 et 300 PSI également disponibles sur demande

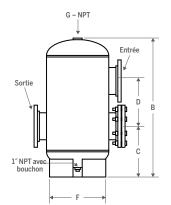
		0									Dime	nsion							D.	ids
#Modèle	Max GPM	Conn	exion	Туре		A	I	В	(0	ı)	ı	E		F	(G	PO	ias
		ро	mm		ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
ESPA2	56	2	51	NPT	12	305	22½	572	9	229	81/2	216	16%	422	9½	241	11/4	32	34	15
ESPA2.5	90	21/2	64	NPT	12	305	221/2	572	9	229	81/2	216	16%	422	9½	241	11/4	32	37	17
ESPA3	190	3	76	BRIDÉ	12	305	25	635	9¾	248	8	203	19¾	502	9½	241	11/4	32	45	20
ESPA4	300	4	102	BRIDÉ	14	356	32	813	121/8	308	10¾	273	21¾	552	11½	292	1½	38	80	36
ESPA5	530	5	127	BRIDÉ	14	356	32	813	121/8	308	10¾	273	21¾	552	11½	292	1½	38	125	57
ESPA6	850	6	152	BRIDÉ	20	508	44	1118	161/4	413	14½	368	28	711	18	457	2	51	175	79
ESPA8	1900	8	203	BRIDÉ	20	508	44	1118	161/4	413	14½	368	28	711	18	457	2	51	210	95
ESPA10	3600	10	254	BRIDÉ	30	762	60½	1537	21½	546	20	508	41	1041	24	610	2	51	460	209
ESPA12	4800	12	305	BRIDÉ	30	762	60½	1537	21½	546	20	508	41	1041	24	610	2	51	577	262
ESPA14	6100	14	356	BRIDÉ	36	914	78	1981	24½	622	31½	800	463/8	1178	30	762	2	51	850	386
ESPA16	8000	16	406	BRIDÉ	48	1219	108	2743	38	965	40	1016	60	1524	38	965	2	51	1858	843
ESPA18	9700	18	457	BRIDÉ	54	1371	124	3150	41	1041	50	1270	66	1676	44	1118	2	51	2490	1129
ESPA20	12000	20	508	BRIDÉ	60	1524	137	3480	421/2	1080	60	1524	72	1829	50	1270	2	51	3346	1518
ESPA22	15000	22	559	BRIDÉ	66	1676	150	3810	46	1168	66	1676	78	1981	56	1422	2	51	3879	1759
ESPA24	17000	24	610	BRIDÉ	66	1676	150	3810	46	1168	66	1676	80	1270	56	1422	2	51	4211	1910

SÉPARATEURS D'AIR TANGENTIELS AVEC CRÉPINE

ESPA-S

Avec crépine

Caractéristiques


- ► Conception conforme ASME, section VIII
- ▶ Avec crépine permettant de retenir les débris

Spécifications techniques

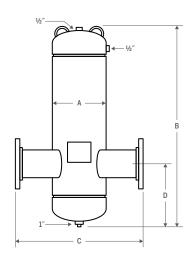
- ▶ Bâti en acier carbonisé
- ► Apprêt à l'oxyde noir
- ► Température maximale de conception: 232°C (450°F)
- ▶ Pression maximale de conception: 125 PSI
- ▶ Pressions de 150, 175, 200, 250 et 300 PSI également disponibles sur demande

		Carr	evier								Dime	nsion							D-	ido
#Modèle	Max GPM	Conn	exion	Туре		A	I	В	(2	I	D	I	E	ı	F	(3	PO	ids
		ро	mm		ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
ESPA2-S	56	2	51	NPT	12	305	221/2	572	9	229	81/2	216	165/8	422	9½	241	11/4	32	34	15
ESPA2.5-S	90	21/2	64	NPT	12	305	22½	572	9	229	81/2	216	165/8	422	9½	241	11/4	32	37	17
ESPA3-S	190	3	76	BRIDÉ	12	305	25	635	9¾	248	8	203	19¾	502	9½	241	11/4	32	45	20
ESPA4-S	300	4	102	BRIDÉ	14	356	32	813	121/8	308	10¾	273	21¾	552	11½	292	1½	38	80	36
ESPA5-S	530	5	127	BRIDÉ	14	356	32	813	121/8	308	10¾	273	21¾	552	11½	292	1½	38	125	57
ESPA6-S	850	6	152	BRIDÉ	20	508	44	1118	161/4	413	14½	368	28	711	18	457	2	51	175	79
ESPA8-S	1900	8	203	BRIDÉ	20	508	44	1118	161/4	413	14½	368	28	711	18	457	2	51	210	95
ESPA10-S	3600	10	254	BRIDÉ	30	762	60½	1537	21½	546	20	508	41	1041	24	610	2	51	460	20
ESPA12-S	4800	12	305	BRIDÉ	30	762	60½	1537	21½	546	20	508	41	1041	24	610	2	51	577	262
ESPA14-S	6100	14	356	BRIDÉ	36	914	78	1981	241/2	622	31½	800	463/8	1178	30	762	2	51	850	380
ESPA16-S	8000	16	406	BRIDÉ	48	1219	108	2743	38	965	40	1016	60	1524	38	965	2	51	1858	843
ESPA18-S	9700	18	457	BRIDÉ	54	1371	124	3150	41	1041	50	1270	66	1676	44	1118	2	51	2490	112
ESPA20-S	12000	20	508	BRIDÉ	60	1524	137	3480	421/2	1080	60	1524	72	1829	50	1270	2	51	3346	151
ESPA22-S	15000	22	559	BRIDÉ	66	1676	150	3810	46	1168	66	1676	78	1981	56	1422	2	51	3879	175
ESPA24-S	17000	24	610	BRIDÉ	66	1676	150	3810	46	1168	66	1676	80	2032	56	1422	2	51	4211	191

SÉPARATEURS D'AIR **COALESCENTS**

EWVAA

Caractéristiques


- ► Conception conforme ASME, section VIII
- ► Média non-remplaçable

Spécifications techniques

- ▶ Média coalescent: acier inoxydable
- ▶ Bâti en acier carbonisé
- Fini extérieur en apprêt peint
- ► Température maximale de conception: 121°C (250°F)
- ▶ Pression maximale de conception: 150 PSI
- ▶ Pressions de 175, 200, 250 et 300 PSI également disponibles sur demande

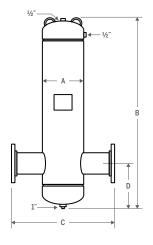
			Dé	bit				Dime	nsion				D.	t.i.
#Modèle	Conn	exion	max	imal		A	ı	3	(0	I)	Po	ıas
	ро	mm	GPM	LPM	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
EWVAA2	2	51	69	261	4	102	18½	470	151/4	387	7	178	35	16
EWVAA2-NPT	2	51	69	261	4	102	18½	470	103/8	264	7	178	26	12
EWVAA2.5	21/2	64	108	409	5	127	18½	470	15¾	400	7	178	61	28
EWVAA2.5-NPT	21/2	64	108	409	5	127	18½	470	11	279	7	178	38	17
EWVAA3	3	76	144	545	6	152	23	584	201/4	514	81/2	216	71	32
EWVAA3-NPT	3	76	144	545	6	152	23	584	12½	318	81/2	216	56	25
EWVAA4	4	102	255	965	8	203	23	584	20%	524	81/2	216	105	48
EWVAA5	5	127	398	1507	10	254	31	787	27¾	705	11½	292	92	42
EWVAA6	6	152	570	2158	12	305	31	787	27¾	705	11½	292	129	59
EWVAA8	8	203	945	3577	16	406	36	914	33%	854	11½	292	225	102
EWVAA10	10	254	1440	5451	20	508	46	1168	37½	953	13½	343	375	170
EWVAA12	12	305	2100	7949	24	610	54	1372	421/2	1080	16	406	564	256

SÉPARATEURS D'AIR **COALESCENTS**

EWVAA-HV

Haute vélocité

Caractéristiques


- ► Conception conforme ASME, section VIII
- ► Média non-remplaçable

Spécifications techniques

- ▶ Média coalescent: acier inoxydable
- ▶ Bâti en acier carbonisé
- Fini extérieur en apprêt peint
- ► Température maximale de conception: 121°C (250°F)
- ▶ Pression maximale de conception: 150 PSI
- ▶ Pressions de 175, 200, 250 et 300 PSI également disponibles sur demande

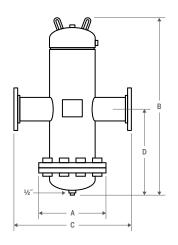
	0		Dé	bit				Dime	nsion				D-	:
#Modèle	Conn	exion	max	imal		A		В	(0	ı	D	Po	ids
	ро	mm	GPM	LPM	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
EWVAA2-HV	2	51	105	397	4	102	23	584	15¼	387	6½	165	40	18
EWVAA2-HV-NPT	2	51	105	397	4	102	23	584	103/8	264	6½	165	31	14
EWVAA2.5-HV	21/2	64	155	587	5	127	23	584	15¾	400	6½	165	68	31
EWVAA2.5-HV-NPT	21/2	64	155	587	5	127	23	584	11	279	6½	165	45	20
EWVAA3-HV	3	76	225	852	6	152	30	762	201/4	514	9	229	82	37
EWVAA3-HV-NPT	3	76	225	852	6	152	30	762	12½	318	9	229	68	31
EWVAA4-HV	4	102	405	1533	8	203	30	762	205/8	524	9	229	122	55
EWVAA5-HV	5	127	630	2385	10	254	41	1041	27¾	705	11½	292	128	58
EWVAA6-HV	6	152	910	3445	12	305	41	1041	27¾	705	11½	292	140	64
EWVAA8-HV	8	203	1610	6094	16	406	49	1245	335/8	854	11½	292	245	111
EWVAA10-HV	10	254	2450	9274	20	508	60	1524	37½	953	14	356	407	185
EWVAA12-HV	12	305	3500	13249	24	610	71	1803	421/2	1080	16	406	612	278

SÉPARATEURS D'AIR ET DE SALETÉS COALESCENTS

EWVA

Média remplaçable

Caractéristique


- ► Conception conforme ASME, section VIII
- Le média peut être retiré pour l'entretien ou le remplacement

Spécifications techniques

- ▶ Média coalescent: acier inoxydable
- ▶ Bâti en acier carbonisé
- Fini extérieur en apprêt peint
- ► Température maximale de conception: 121°C (250°F)
- Pression maximale de conception: 150 PSI
- ▶ Pressions de 175, 200, 250 et 300 PSI également disponibles sur demande

	0		D.	1.11				Dime	nsion				D.	tal.
#Modèle	Conn	exion	De	bit	,	A		В	(0	[)	Po	ıas
	ро	mm	GPM	LPM	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
EWVA2	2	51	69	261	9	229	23	584	151/4	387	11½	292	100	45
EWVA2-NPT	2	51	69	261	9	229	23	584	9	227	11½	292	90	41
EWVA2.5	21/2	64	108	409	10	254	23	584	15¾	400	11½	292	125	57
EWVA2.5-NPT	21/2	64	108	409	10	254	23	584	10½	267	11½	292	115	52
EWVA3	3	76	144	545	11	279	29	737	201/4	514	141/2	368	150	68
EWVA3-NPT	3	76	144	545	11	279	29	737	12½	318	141/2	368	130	59
EWVA4	4	102	255	965	13½	343	29	737	20%	524	141/2	368	250	113
EWVA5	5	127	398	1507	16	406	39	991	27¾	705	19½	495	310	141
EWVA6	6	152	570	2158	19	483	39	991	27¾	705	19½	495	375	170
EWVA8	8	203	945	3577	23½	597	49	1245	35%	905	24½	622	700	318
EWVA10	10	254	1440	5451	27½	699	65	1651	37½	953	32½	826	1000	454
EWVA12	12	305	2100	7949	32	813	76	1930	421/2	1080	38	965	1500	680

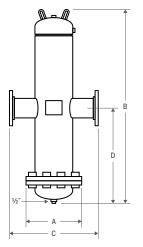
SÉPARATEURS D'AIR ET DE SALETÉS COALESCENTS

EWVA-HV

Haute vélocité

Média remplaçable

Caractéristique


- ► Conception conforme ASME, section VIII
- Le média peut être retiré pour l'entretien ou le remplacement

Spécifications techniques

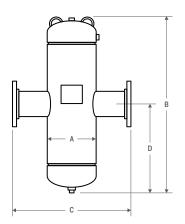
- ▶ Média coalescent: acier inoxydable
- ▶ Bâti en acier carbonisé
- Fini extérieur en apprêt peint
- ► Température maximale de conception: 121°C (250°F)
- ▶ Pression maximale de conception: 150 PSI
- Pressions de 175, 200, 250 et 300 PSI également disponibles sur demande

	0		Dá	Lik				Dime	nsion				D-	:
#Modèle	Conr	nexion	De	bit	,	A		В		C	I)	Po	ias
	ро	mm	GPM	LPM	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
EWVA2-HV	2	51	105	397	9	229	33	838	15¼	387	16½	419	110	50
EWVA2.5-HV	21/2	64	155	587	9	229	33	838	15¾	400	16½	419	140	64
EWVA3-HV	3	76	225	852	11	279	42	1067	201/4	514	21	533	175	79
EWVA4-HV	4	102	405	1533	13½	343	42	1067	205/8	524	21	533	275	125
EWVA5-HV	5	127	630	2385	16	406	59	1499	27¾	705	29½	749	475	215
EWVA6-HV	6	152	910	3445	19	483	59	1499	27¾	705	29½	749	525	238
EWVA8-HV	8	203	1610	6095	23½	597	75	1905	335/8	854	37¾	959	825	374
EWVA10-HV	10	254	2450	9274	27½	699	92	2337	37½	953	46	1168	1275	578
EWVA12-HV	12	305	3500	13249	32	813	110	2794	421/2	1080	55	1397	2050	930

SÉPARATEURS D'AIR ET DE SALETÉS COALESCENTS

E#S

EWVAN


Caractéristiques

- ► Conception conforme ASME, section VIII
- ► Média non-remplaçable

Spécifications techniques

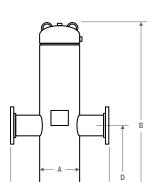
- ▶ Média coalescent: acier inoxydable
- ▶ Bâti en acier carbonisé
- ► Fini extérieur en apprêt peint
- ► Température maximale de conception: 121°C (250°F)
- ▶ Pression maximale de conception: 150 PSI
- Pressions de 175, 200, 250 et 300 PSI également disponibles sur demande

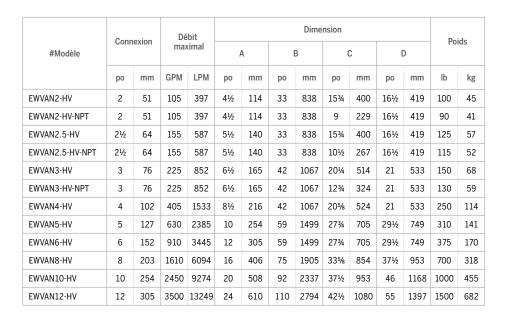
			Dé	bit				Dime	nsion					
#Modèle	Conn	exion		imal		A		В	(C	I)	Po	as
	ро	mm	GPM	LPM	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
EWVAN2	2	51	69	261	41/2	114	23	584	151/4	387	11½	292	76	35
EWVAN2-NPT	2	51	69	261	41/2	114	23	584	9	229	11½	292	70	32
EWVAN2.5	21/2	64	108	409	5½	140	23	584	15¾	400	11½	292	99	45
EWVAN2.5-NPT	21/2	64	108	409	5½	140	23	584	10½	267	11½	292	90	41
EWVAN3	3	76	144	545	6½	165	29	737	201/4	514	141/2	368	114	52
EWVAN3-NPT	3	76	144	545	6½	165	29	737	12¾	324	141/2	368	100	46
EWVAN4	4	102	255	965	81/2	216	29	737	20%	524	14½	368	194	88
EWVAN5	5	127	398	1507	10	254	39	991	27¾	705	19½	495	230	105
EWVAN6	6	152	570	2158	12	305	39	991	27¾	705	19½	495	255	116
EWVAN8	8	203	945	3577	16	406	49	1245	33%	854	241/2	622	514	234
EWVAN10	10	254	1440	5451	20	508	65	1651	37½	953	32½	826	770	350
EWVAN12	12	305	2100	7949	24	610	76	1930	421/2	1080	38	965	1080	491

SÉPARATEURS D'AIR ET DE SALETÉS COALESCENTS

EWVAN-HV

Haute vélocité


Caractéristiques


- Conception conforme ASME, section VIII
- ► Média non-remplaçable

Spécifications techniques

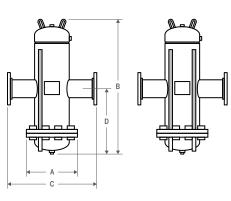
- ▶ Média coalescent: acier inoxydable
- ► Coquille: acier carbonisé
- Fini extérieur en apprêt peint
- ► Température maximale de conception: 121°C (250°F)
- ▶ Pression maximale de conception: 150 PSI
- ▶ Pressions de 175, 200, 250 et 300 PSI également disponibles sur demande

SÉPARATEURS D'AIR ET DE SALETÉS COALESCENTS AVEC AIMANT

EWVA-MAG

Média remplaçable

Caractéristiques


- ► Conception conforme ASME, section VIII
- Le média peut être retiré pour l'entretien ou le remplacement
- Fourni avec un ou deux aimants amovibles

Spécifications techniques

- ▶ Média coalescent: acier inoxydable
- ▶ Bâti en acier carbonisé
- Fini extérieur en apprêt peint
- ► Température maximale de conception: 121°C (250°F)
- Pression maximale de conception: 150 PSI
- ▶ Pressions de 175, 200, 250 et 300 PSI également disponibles sur demande

EWVA2-MAG à EWVA8-MAG	EWVA10-MAG et plus

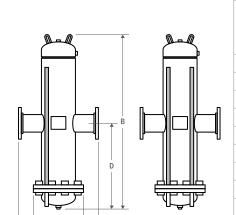
	Conn.	Dź	bit				Dime	nsion				D-	اماء
#Modèle	Conn.	De	DIT	1	A		В	(0)	PO	ids
	ро	GPM	LPM	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
EWVA2-MAG	2	69	261	9	229	23	584	15¼	387	11½	292	110	243
EWVA2-NPT-MAG	2	69	261	9	229	23	584	9	229	11½	292	100	221
EWVA2.5-MAG	21/2	108	409	10	254	23	584	15¾	400	11½	292	138	304
EWVA2.5-NPT-MAG	21/2	108	409	10	254	23	584	10½	267	11½	292	128	282
EWVA3-MAG	3	144	545	11	279	29	737	201/4	57	14½	368	165	364
EWVA3-NPT-MAG	3	144	545	11	279	29	737	12¾	324	14½	368	155	342
EWVA4-MAG	4	255	965	13½	343	29	737	205/8	524	14½	368	270	595
EWVA5-MAG	5	398	1506	16	406	39	991	27¾	705	19½	495	335	739
EWVA6-MAG	6	570	2157	19	483	39	991	27¾	705	19½	495	405	893
EWVA8-MAG	8	945	3577	23½	597	49	1245	335/8	854	241/2	622	740	1632
EWVA10-MAG	10	1440	5450	27½	699	65	1651	37½	953	321/2	826	1050	2315
EWVA12-MAG	12	2100	7949	32	813	76	1930	421/2	1080	38	965	1560	3440

SÉPARATEURS D'AIR ET DE SALETÉS

COALESCENTS AVEC AIMANT

EWVA-HV-MAG

Haute vélocité Média remplaçable


Caractéristiques

- ► Conception conforme ASME, section VIII
- Le média peut être retiré pour l'entretien ou le remplacement
- ▶ Fourni avec un ou deux aimants amovibles

Spécifications techniques

- ▶ Média coalescent: acier inoxydable
- ▶ Bâti en acier carbonisé
- Fini extérieur en apprêt peint
- ► Température maximale de conception: 121°C (250°F)
- Pression maximale de conception: 150 PSI
- ▶ Pressions de 175, 200, 250 et 300 PSI également disponibles sur demande

10/40 LD/ 1440 \ FUO/40 LD/ 1440	END(410 ID(1440 I I
VVA2-HV-MAG à EWVA8-HV-MAG	EWVA10-HV-MAG et plus

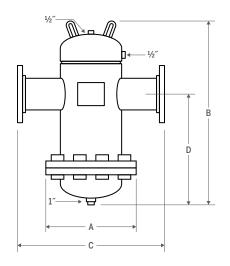
	0	D.	1. 11.				Dime	nsion				D.	t.i.
#Modèle	Conn.	De	bit	A	A	ı	В	(0	[)	Po	ids
	ро	GPM	LPM	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
EWVA2-HV-MAG	2	105	397	9	229	33	838	15¼	387	16½	419	110	243
EWVA2-HV-NPT-MAG	2	105	397	9	229	33	838	9	229	16½	419	100	221
EWVA2.5-HV-MAG	21/2	155	587	10	254	33	838	15¾	400	16½	419	138	304
EWVA2.5-HV-NPT-MAG	21/2	155	587	10	254	33	838	10½	267	16½	419	128	282
EWVA3-HV-MAG	3	225	852	11	279	42	1067	201/4	57	21	533	165	364
EWVA3-HV-NPT-MAG	3	225	852	11	279	42	1067	12¾	324	21	533	155	342
EWVA4-HV-MAG	4	405	1533	13½	343	42	1067	205/8	524	21	533	270	595
EWVA5-HV-MAG	5	630	2385	16	406	59	1499	27¾	705	29½	749	335	739
EWVA6-HV-MAG	6	910	3444	19	483	59	1499	27¾	705	29½	749	405	893
EWVA8-HV-MAG	8	1610	6094	23½	597	75	1905	335/8	854	37¾	959	740	1632
EWVA10-HV-MAG	10	2450	9273	27½	699	92	2337	37½	953	46	1168	1050	2315
EWVA12-HV-MAG	12	3500	13248	32	813	110	2794	421/2	1080	55	1397	1560	3440

SÉPARATEURS DE SALETÉS COALESCENTS

EWVAD

Média remplaçable

Caractéristique


- ► Conception conforme ASME, section VIII
- Le média peut être retiré pour l'entretien ou le remplacement

Spécifications techniques

- ▶ Média coalescent: acier inoxydable
- ▶ Bâti en acier carbonisé
- Fini extérieur en apprêt peint
- ► Température maximale de conception: 121°C (250°F)
- ▶ Pression maximale de conception: 150 PSI
- ▶ Pressions de 175, 200, 250 et 300 PSI également disponibles

	0		Dé	bit				Dime	nsion				р.	
#Modèle	Conn	exion	max	imal	,	A	ı	В	(0	ı)	Po	ids
	ро	mm	GPM	LPM	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
EWVAD2	2	51	69	261	9	229	18½	470	151/4	387	11½	292	64	29
EWVAD2-NPT	2	51	69	261	9	229	18½	470	10%	264	11½	292	55	25
EWVAD2.5	21/2	64	108	409	10	254	18½	470	15¾	400	11½	292	82	37
EWVAD2.5-NPT	21/2	64	108	409	10	254	18½	470	11	279	11½	292	70	32
EWVAD3	3	76	144	545	11	279	23	584	201/4	514	14½	368	113	51
EWVAD3-NPT	3	76	144	545	11	279	23	584	12½	318	14½	368	198	90
EWVAD4	4	102	255	965	131/2	343	23	584	20%	524	14½	368	168	76
EWVAD5	5	127	398	1507	16	406	31	787	27¾	705	19½	495	245	111
EWVAD6	6	152	570	2158	19	483	31	787	27¾	705	19½	495	347	158
EWVAD8	8	203	945	3577	23½	597	36	914	33%	854	24½	622	451	205
EWVAD10	10	254	1440	5451	271/2	699	46	1168	37½	953	32½	826	711	323
EWVAD12	12	305	2100	7949	32	813	54	1372	421/2	1080	38	965	1121	510

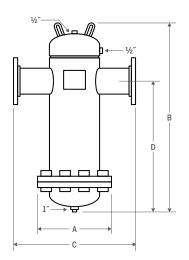
SÉPARATEURS DE SALETÉS COALESCENTS

EWVAD-HV

Haute vélocité

Média remplaçable

Caractéristique


- ► Conception conforme ASME, section VIII
- Le média peut être retiré pour l'entretien ou le remplacement

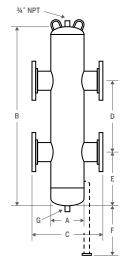
Spécifications techniques

- ▶ Média coalescent: acier inoxydable
- ► Coquille: acier
- Fini extérieur en apprêt peint
- ► Température maximale de conception: 121°C (250°F)
- ▶ Pression maximale de conception: 150 PSI
- ▶ Pressions de 175, 200, 250 et 300 PSI également disponibles

	0		Dé	bit				Dime	nsion				D.	tal.
#Modèle	Conn	exion	max	imal	,	A		В	(0	ı	D	Po	ıas
	ро	mm	GPM	LPM	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
EWVAD2HV	2	51	105	397	9	229	23	584	151/4	387	16½	419	69	31
EWVAD2HV-NPT	2	51	105	397	9	229	23	584	10%	264	16½	419	60	27
EWVAD2.5HV	21/2	64	155	587	10	254	23	584	15¾	400	16½	419	89	40
EWVAD2.5HV-NPT	21/2	64	155	587	10	254	23	584	11	279	16½	419	77	35
EWVAD3HV	3	76	225	852	11	279	30	762	201/4	514	21	533	125	57
EWVAD3HV-NPT	3	76	225	852	11	279	30	762	12½	318	21	533	110	50
EWVAD4HV	4	102	405	1533	13½	343	30	762	20%	524	21	533	185	84
EWVAD5HV	5	127	630	2385	16	406	41	1041	27¾	705	29½	749	280	127
EWVAD6HV	6	152	910	3445	19	483	41	1041	27¾	705	29½	749	390	177
EWVAD8HV	8	203	1610	6094	23½	597	49	1245	33%	854	37¾	959	472	215
EWVAD10HV	10	254	2450	9274	27½	699	60	1524	37½	953	46	1168	744	338
EWVAD12HV	12	305	3500	13249	32	813	71	1803	421/2	1080	55	1397	1169	531

CALBALANCE AVEC BRIDE ASME

Caractéristique


- ► Conception conforme ASME, section VIII
- ▶ Réduit la consommation d'énergie comme les pompes se limitent aux zones requises
- ▶ Modèles à connexion de 6 po ou plus fournis sur pied

Spécifications techniques

- ▶ Bâti en acier carbonisé
- Fini extérieur en apprêt peint
- ► Température maximale de conception: 299°C (550°F)
- ▶ Pression maximale de conception: 150 PSI
- ▶ Pressions de 175, 200, 250 et 300 PSI également disponibles sur demande

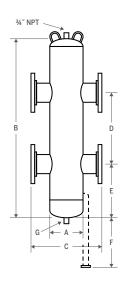
	лех.	D.	1.11							Dime	nsion							Del	r.i.
#Modèle	Connex.	De	bit		A	ı	3		С	ı)	ı	Ε		F	(G	Po	Ias
	ро	GPM	LPM	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
CB200A	2	34	129	65/8	168	34	864	14	356	16	406	9	229			0,75	19	116	53
CB250A	21/2	90	341	85/8	219	34	864	14	356	16	406	9	229			0,75	19	153	70
CB300A	3	130	492	10¾	273	48	1219	18	457	24	610	12	305	-	-	0,75	19	247	112
CB400A	4	255	965	12¾	324	49	1245	20	508	25	635	12	305			1	25	307	140
CB500A	5	398	1507	16	406	68	1727	24	610	32	813	18	457			1	25	352	160
CB600A	6	570	2158	18	457	89	2261	28	711	41	1041	24	610	14	356	1	25	532	242
CB800A	8	945	3577	24	610	115	2921	36	914	55	1397	30	762	14	356	1	25	915	416
CB1000A	10	1440	5451	30	762	144	3658	42	1067	72	1829	36	914	14	356	1	25	1424	647
CB1200A	12	2100	7949	30	762	157	3988	42	1067	73	1854	42	1067	14	356	2	51	2090	950
CB1400A	14	2550	9653	42	1067	211¾	5378	54	1371	131¼	3334	42	1067	14	356	2	51	2430	1102
CB1600A	16	3330	12492	48	1220	236¾	6013	60	1524	150	3810	451/8	1146	14	356	2	51	3260	1479

SÉPARATEURS HYDRAULIQUES 3 EN 1

CALBALANCE AVEC BRIDE ASME

Sépare l'eau, l'air et la saleté

Caractéristiques


- ► Conception conforme ASME, section VIII
- ▶ Réduit la consommation d'énergie comme les pompes se limitent aux zones requises
- ▶ Média coalescent qui permet à l'air, aux micro-bulles et aux particules de saletés de s'y accrocher
- ► Média non-remplaçable
- ▶ Modèles à connexion de 6 po ou plus fournis sur pied

Spécifications techniques

- ▶ Média coalescent: acier inoxydable
- ▶ Bâti en acier carbonisé
- Fini extérieur en apprêt peint
- ► Température maximale de conception: 299°C (550°F)
- ▶ Pression maximale de conception: 150 PSI
- ▶ Pressions de 175, 200, 250 et 300 PSI également disponibles sur demande

Évent industriel (MV15) disponible en option.

	Connex.	Dź	bit							Dime	nsion							Da	ids
#Modèle	Con	De	DIT	,	A	E	В	(С	ı	D	ı	E		F	(G .	Po	as
	ро	GPM	LPM	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
CB200AV	2	69	261	65/8	168	34	864	14	356	16	406	9	229			0,75	19	122	55
CB250AV	21/2	108	409	85/8	219	34	864	14	356	16	406	9	229			0,75	19	161	73
CB300AV	3	144	545	10¾	273	48	1219	18	457	24	610	12	305	-	-	0,75	19	259	118
CB400AV	4	255	965	12¾	324	49	1245	20	508	25	635	12	305			1	25	322	146
CB500AV	5	398	1507	16	406	68	1727	24	610	32	813	18	457			1	25	370	168
CB600AV	6	570	2158	18	457	89	2261	28	711	41	1041	24	610	14	356	1	25	560	255
CB800AV	8	945	3577	24	610	115	2921	36	914	55	1397	30	762	14	356	1	25	961	437
CB1000AV	10	1440	5451	30	762	144	3658	42	1067	72	1829	36	914	14	356	1	25	1495	680
CB1200AV	12	2100	7949	30	762	157	3988	42	1067	73	1854	42	1067	14	356	2	51	2195	998
CB1400AV	14	2550	9653	42	1067	211¾	5378	54	1371	131¼	3334	42	1067	14	356	2	51	2430	1102
CB1600AV	16	3300	12492	48	1220	236¾	6013	60	1524	150	3810	451/8	1146	14	356	2	51	3260	1479

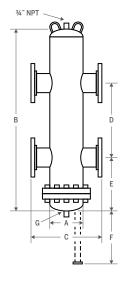
SÉPARATEURS HYDRAULIQUES 3 EN 1

CALBALANCE AVEC BRIDE ASME

Sépare l'eau, l'air et la saleté

Média remplaçable

Caractérisiques


- ► Conception conforme ASME, section VIII
- ▶ Réduit la consommation d'énergie comme les pompes se limitent aux zones requises
- ▶ Média coalescent qui permet à l'air, aux micro-bulles et aux particules de saletés de s'y accrocher
- Le média peut être retiré pour l'entretien ou le remplacement
- Modèles à connexion de 6 po ou plus fournis sur pied

Spécifications techniques

- Média coalescent: acier inoxydable
- ▶ Bâti en acier carbonisé
- Fini extérieur en apprêt peint
- ► Température maximale de conception: 299°C (550°F)
- ▶ Pression maximale de conception: 150 PSI
- ▶ Pressions de 175, 200, 250 et 300 PSI également disponibles sur demande

	Connex.	D.	Lik							Dime	nsion							D-	:
#Modèle	Con	De	bit		A		3		С	ı	D	I	E		F	(à	Po	ids
	ро	GPM	LPM	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	ро	mm	lb	kg
CB200AVR	2	69	261	65/8	168	34	864	14	356	16	406	9	229			0,75	19	165	75
CB250AVR	21/2	108	409	85/8	219	34	864	14	356	16	406	9	229			0,75	19	226	103
CB300AVR	3	144	545	10¾	273	48	1219	18	457	24	610	12	305	_	-	0,75	19	353	160
CB400AVR	4	255	965	12¾	324	49	1245	20	508	25	635	12	305			1	25	458	208
CB500AVR	5	398	1507	16	406	68	1727	24	610	32	813	18	457			1	25	578	263
CB600AVR	6	570	2158	18	457	89	2261	28	711	41	1041	24	610	14	356	1	25	840	382
CB800AVR	8	945	3577	24	610	115	2921	36	914	55	1397	30	762	14	356	1	25	1311	596
CB1000AVR	10	1440	5451	30	762	144	3658	42	1067	72	1829	36	914	14	356	1	25	1955	889
CB1200AVR	12	2100	7949	30	762	157	3988	42	1067	73	1854	42	1067	14	356	2	51	2845	1293
CB1400AVR	14	2550	9653	42	1067	211¾	5378	54	1372	131¼	3334	42	1067	14	356	2	51	4138	1881
CB1600AVR	16	3300	12492	48	1219	236¾	6013	60	1524	150	3810	451/8	1146	14	356	2	51	5142	2337

GUIDE DE SÉLECTION RÉSERVOIRS D'EXPANSION ASME

Pourquoi un réservoir d'expansion est-il nécessaire?

Un réservoir d'expansion est nécessaire dans un circuit fermé de chauffage ou un système de chauffage, de ventilation et de conditionnement d'air refroidi à l'eau pour deux motifs d'une grande importance;

- ▶ Pour réguler la plage des pressions de service de l'installation
- Pour fournir à l'eau dilatée dans le réseau un endroit où s'accumuler à mesure que l'eau est chauffée. Dans une installation de chauffage, la dilatation se produit lorsque l'eau est chauffée de sa température la plus froide de remplissage à sa température de service. Dans une installation de refroidissement de l'eau, la dilatation survient lorsque l'installation est fermée et que la température du réseau s'élève de la température de service à la température ambiante

L'objectif au moment de choisir la capacité d'un réservoir d'expansion consiste à permettre à l'installation d'absorber la dilatation de l'eau au cours des cycles de chauffage et de refroidissement sans que l'installation ne dépasse la limite de pression du composant dont la pression nominale est la moins élevée. Habituellement, pour des motifs de conception, l'appareil qui possède les caractéristiques nominales les moins élevées est la soupape de détente. La pression maximale de l'installation est fixée normalement à 90 % de la caractéristique nominale de la soupape de détente à son lieu d'installation.

Comparaison entre les réservoirs à membrane ou à vessie aux réservoirs d'acier sans membrane

Le réservoir d'expansion sans membrane est employé depuis nombre d'années et son fonctionnement a toujours été excellent. Lorsqu'un réservoir d'expansion sans membrane est utilisé, l'installation est régulée au moyen de l'air. Il faut exercer un contrôle sur le volume d'air ou le coussin d'air qui se forme au-dessus du niveau d'eau dans le réservoir. Étant donné que le coussin d'air et l'eau sont en contact à l'intérieur du réservoir, l'air est absorbé par l'eau. Si l'air absorbé par l'eau ne retourne pas de la façon adéquate vers le coussin d'air, un trop-plein d'eau s'ensuit dans le réservoir.

Un trop-plein survient lorsque le volume réduit du coussin d'air d'un réservoir d'expansion ne permet plus à l'eau dilatée thermiquement de pénétrer dans le réservoir sans que la pression excède la pression maximale de l'installation. Lorsque la pression maximale est dépassée, la soupape de détente s'ouvre et l'eau chauffée s'écoule vers le drain. **MISE EN GARDE:** Il n'est pas nécessaire qu'un réservoir d'expansion soit entièrement plein pour qu'il y ait trop-plein. Les mêmes manifestations se produiront si le réservoir d'expansion est trop petit.

L'avantage d'un réservoir d'acier sans membrane réside dans son coût d'achat moins élevé que celui d'un réservoir avec membrane ou vessie. Cependant, dans nombre de cas, le coût d'utilisation annulera cet avantage.

Le réservoir d'expansion à membrane ou à vessie a été conçu dans le but de séparer le coussin d'air de l'eau de l'installation. L'eau ne peut s'infiltrer à l'intérieur du réservoir, puisque l'air est emprisonné entre la paroi du réservoir et la surface externe de la vessie installée à l'intérieur du réservoir. L'eau est maintenue à l'intérieur de la vessie. Ainsi, l'installation fonctionne également comme un purgeur d'air, puisque l'air extrait de l'eau est évacué vers l'atmosphère.

Un réservoir à vessie est généralement plus petit qu'un réservoir sans membrane dans des conditions d'utilisation identiques. En effet, de l'air est mis sous pression dans le réservoir jusqu'à l'atteinte de la pression de service avant que l'installation soit remplie d'eau. La seule eau que doit recevoir un réservoir d'expansion à vessie ou à membrane est l'eau dilatée. Dans une installation de chauffage, ce phénomène se produit lorsque l'eau à la température de remplissage est chauffée jusqu'à la température de service.

En ce qui a trait à une installation de refroidissement de l'eau, la température de l'eau s'élève de la température de service à la température ambiante. Étant donné que l'installation a la capacité d'évacuer l'air, il est possible d'installer l'évent et le séparateur d'air à l'endroit le plus adéquat de l'installation, soit habituellement au point haut, là où la pression est la moins élevée, ou à la sortie de la chaudière, là où la température de l'eau est la plus haute. Le réservoir d'expansion peut alors être installé au niveau du sol, puisque l'air n'a plus à être retourné vers le réservoir. Ainsi, le réservoir d'expansion à membrane ou à vessie peut être installé à l'endroit le plus avantageux.

Emplacement habituel des réservoirs d'expansion

Le point de raccordement entre l'installation et le réservoir d'expansion se nomme le point de maintien de la pression. Ainsi, peu importe l'endroit où le réservoir d'expansion est raccordé à l'installation, la pression sera toujours la même que la pression à l'intérieur du réservoir, qu'il s'agisse d'un réservoir sans membrane ou d'un réservoir avec vessie ou membrane, ou que la pompe de l'installation soit en marche ou non. La pression ne variera que si de l'eau ou de l'air est ajouté au réservoir ou en est retiré. Pour mieux comprendre ce point de maintien de la pression, il est nécessaire de comprendre la loi de Boyle-Mariotte.

En raison de l'existence de ce point de maintien de la pression, l'installation subit un surcroît de pression de la pompe, entre le refoulement de la pompe et le raccord du réservoir d'expansion. Du raccord du réservoir d'expansion à l'aspiration de la pompe, l'installation subit une baisse de pression par rapport à la pression du réservoir en raison de la perte de charge amenée par le débit.

Compte tenu de la perte de la pression ajoutée par la pompe et de la perte de charge par frottement, il est donc préférable de situer ce point de maintien de la pression, autrement dit le point de raccordement du réservoir d'expansion au système, le plus près possible de l'aspiration de la pompe.

SÉRIES AL/ALT/OT

Réservoirs d'expansion ASME À vessie ou à membrane

Proj	jet: Soumis par:			Date:	
Lieu	u: Approuvé par:			Date:	
Inge	énieur:Nº commande:_			Date:	
Enti	repreneur: Notes:				
Rep	orésentant :				
Re	nseignements requis				
1	Volume total d'eau contenu dans le circuit		(1)	gal	L
2	Température de l'eau une fois le circuit rempli		(2)	°F	°C
3	Température maximale de fonctionnement		(3)	°F	°C
4	Pression minimale de fonctionnement (habituellement, la pression de remplissage)		(4)	PSI	kPa
5	Pression maximale de fonctionnement (10 % sous le seuil de la soupape de détente)		(5)	PSI	kPa
Ca	Icul du volume pour des systèmes de chauffage ou de climatisa	tion à caloporteı	ır		
6	Inscrivez le volume total d'eau contenu dans le circuit de la ligne (1).		(6)	gal	L
7	À l'aide du tableau «Facteur de dilatation» (voir p.91), calculez et inscrivez le facteur	de dilatation	(7)		
8	Multipliez le chiffre de la ligne (6) par celui de la ligne (7). Inscrivez le volume d'expar	nsion de l'eau.	(8)	gal	L,
9	À l'aide du tableau «Facteur d'acceptance» (voir p.99-100), calculez et inscrivez le fa	acteur d'acceptance.	(9)	PSI	kPa
10	Divisez le résultat de la ligne (8) par celui de la ligne (9); inscrivez le volume total du	réservoir.	(10)	gal	L
	Ligne (8) , volume d'expansion de l'eau (volume toléré)	Ligne (10)	, \	volume total du i	réservoir

Sélection du modèle

Choisissez l'un des modèles de réservoirs d'expansion à partir de la table des réservoirs à vessie ou à membrane.

- Les modèles HGT (non-ASME) ou OT doivent respecter les critères des lignes (8) et (10).
- Les modèles AL ne doivent respecter que le critère de la ligne (10).

Dans le cas de systèmes de grande envergure, plusieurs réservoirs d'expansion peuvent être raccordés ensemble.

MISE EN GARDE: Le tableau « Facteur de dilatation » n'a été prévu que pour les systèmes utilisant l'eau comme caloporteur. Ajoutez 60 % au facteur de dilatation lorsqu'une solution moitié glycol, moitié eau est employée ou communiquez avec le représentant Calefactio de votre région si la concentration de la solution est différente. Plusieurs réservoirs d'expansion peuvent être raccordés ensemble.

TABLEAU FACTEURS DE DILATATION

Temp.	finale						Tem	pérature in	itiale					
°F	°C	40°F 4,4°C	45°F 7,2°C	50°F 10°C	55°F 12,7°C	60°F 15,5°C	65°F 18,3°C	70°F 21,1°C	75°F 23,8°C	80°F 26,6°C	85°F 29,4°C	90°F 32,2°C	95°F 35°C	100°F 37,7°C
50	10.0	0,00008	0,00006	-										
55	12,7	0,00027	0,00025	0,00019	-									
60	15,5	0,00057	0,00055	0,00049	0,00030	-								
65	18,3	0,00095	0,00093	0,00087	0,00068	0,00038	-							
70	21,1	0,00151	0,00149	0,00143	0,00124	0,00094	0,00056	-						
75	23,8	0,00194	0,00194	0,00188	0,00169	0,00139	0,00101	0,00045	-					
80	26,6	0,00260	0,00260	0,00254	0,00235	0,00205	0,00167	0,00111	0,00066	-				
85	29,4	0,00326	0,00326	0,00320	0,00301	0,00271	0,00233	0,00177	0,00132	0,00066	-			
90	32,2	0,00405	0,00405	0,00399	0,00380	0,00350	0,00312	0,00256	0,00211	0,00145	0,00079	-		
95	35.0	0,00485	0,00485	0,00479	0,00460	0,00430	0,00392	0,00336	0,00291	0,00225	0,00159	0,00080	-	
100	37,7	0,00577	0,00575	0,00569	0,00550	0,00520	0,00482	0,00426	0,00381	0,00315	0,00249	0,00170	0,00090	-
105	40,5	0,00673	0,00671	0,00655	0,00646	0,00616	0,00578	0,00522	0,00477	0,00411	0,00345	0,00266	0,00186	0,00096
110	43,3	0,00773	0,00771	0,00765	0,00746	0,00716	0,00678	0,00622	0,00577	0,00511	0,00445	0,00366	0,00286	0,00196
115	46,1	0,00881	0,00879	0,00873	0,00854	0,00824	0,00786	0,00730	0,00685	0,00619	0,00553	0,00474	0,00394	0,00304
120	48,8	0,01006	0,01004	0,00998	0,00979	0,00949	0,00911	0,00855	0,00810	0,00744	0,00678	0,00599	0,00519	0,00429
125	51,6	0,01113	0,01111	0,01105	0,01086	0,01056	0,01018	0,00962	0,00917	0,00851	0,00785	0,00706	0,00625	0,00536
130	54,4	0,01238	0,01236	0,01230	0,01211	0,01181	0,01143	0,01087	0,01042	0,00976	0,00910	0,00831	0,00751	0,00661
135	57,2	0,01370	0,01368	0,01362	0,01342	0,01313	0,01275	0,01219	0,01174	0,01108	0,01042	0,00963	0,00883	0,00793
140	60.0	0,01503	0,01501	0,01495	0,01476	0,01446	0,01408	0,01352	0,01307	0,01241	0,01175	0,01096	0,01016	0,00926
145	62,7	0,01645	0,01643	0,01637	0,01618	0,01588	0,01550	0,01494	0,01449	0,01383	0,01317	0,01238	0,00158	0,01068
150	65,5	0,01787	0,01787	0,01779	0,01760	0,01730	0,01692	0,01636	0,01591	0,01525	0,01459	0,01330	0,01300	0,01210
155	68,3	0,01939	0,01937	0,01931	0,01912	0,01882	0,01844	0,01788	0,01743	0,01677	0,01611	0,01532	0,01452	0,01362
160	71,1	0,02094	0,02092	0,02086	0,02067	0,02037	0,01999	0,01943	0,01877	0,01811	0,01732	0,01652	0,01572	0,01482
165	73,8	0,02254	0,02252	0,02246	0,02227	0,02197	0,02159	0,02103	0,02058	0,01992	0,01926	0,01847	0,01767	0,01677
170	76,6	0,02420	0,02418	0,02412	0,02393	0,02363	0,02325	0,02269	0,02224	0,02158	0,02092	0,02013	0,01933	0,01843
175	79,4	0,02590	0,02588	0,02582	0,02563	0,02533	0,02495	0,02439	0,02394	0,02328	0,02262	0,02183	0,02103	0,02013
180	82,2	0,02765	0,02763	0,02757	0,02738	0,02708	0,02670	0,02614	0,02569	0,02503	0,02437	0,02358	0,02278	0,02188
185	85.0	0,02943	0,02941	0,02935	0,02916	0,02886	0,02848	0,02792	0,02747	0,02681	0,02615	0,02536	0,02456	0,02366
190	87,7	0,03129	0,03127	0,03121	0,03102	0,03072	0,03034	0,02978	0,02933	0,02867	0,02801	0,02722	0,02642	0,02552
195	90,5	0,03316	0,03314	0,0330	0,03289	0,03259	0,03221	0,03165	0,03120	0,03054	0,02988	0,02909	0,02829	0,02739
200	93,3	0,03512	0,03510	0,03504	0,03485	0,03455	0,03417	0,03361	0,03316	0,03250	0,03184	0,03105	0,03025	0,02935
205	96,1	0,03709	0,03707	0,03701	0,03682	0,03652	0,03614	0,03558	0,03513	0,03447	0,03381	0,00302	0,03222	0,03132
210	98,8	0,03913	0,03911	0,03905	0,03885	0,03856	0,03818	0,03762	0,03717	0,03651	0,03585	0,03506	0,03426	0,03336
215	101,6	0,04122	0,04120	0,04114	0,04095	0,04065	0,04027	0,03971	0,03926	0,03860	0,03794	0,03715	0,03635	0,03545
220	104,4	0,04337	0,04335	0,04329	0,04310	0,04280	0,04242	0,04186	0,04141	0,04075	0,04009	0,03930	0,03850	0,03760
225	107,2	0,04551	0,04549	0,04543	0,04524	0,04494	0,04456	0,04400	0,04355	0,04289	0,04223	0,04144	0,04064	0,03974
230	110.0	0,04764	0,04762	0,04756	0,04737	0,04707	0,04669	0,04613	0,04568	0,04502	0,04436	0,04357	0,04277	0,04187
235	111,7	0,04993	0,04991	0,04985	0,04966	0,04936	0,04898	0,04842	0,04797	0,04731	0,04665	0,04586	0,04506	0,04416
240	115.0	0,05222	0,05220	0,05214	0,05195	0,05165	0,05127	0,05071	0,05026	0,04960	0,04894	0,04815	0,04735	0,04645
245	118,3	0,05451	0,05449	0,05443	0,05424	0,05394	0,05356	0,05300	0,05255	0,05189	0,05123	0,05044	0,04964	0,04874

CALCUL DU VOLUME D'INSTALLATION

Ajoutez le volume total des conduites d'eau en gallons (chiffre tiré du Tableau 1) au volume total en gallons de toutes les composantes de l'installation (chaudières, échangeurs de chaleur, etc.):

Tableau 1 Volume du tuyau exprimé en gallons par pied

Diamètre du tuyau	½ po	³⁄4 po	1 po	1 ¼ po	1 ½ po	2 po	2 ½ po
Tuyau d'acier (nomenclature 40)	0,0157	0,0277	0,0449	0,0779	0,106	0,174	0,249
Tuyau de cuivre	0,0121	0,0251	0,0429	0,0653	0,0924	0,161	0,248
Diamètre du tuyau	3 ро	4 po	5 po	6 po	8 po	10 po	12 po
Tuyau d'acier (nomenclature 40)	0,384	0,66	1,04	1,51	2,61	4,11	5,82
Tuyau de cuivre	0,354	0,622	0,971	1,39	2,43	3,78	5,46

Tableau 2
Capacité en gallons d'un réservoir sans membrane selon les dimensions du réservoir

Diamètre (po)	Longueur (po)	Volume (gallons)	Gallons par pouce supplémentaire
12	33	15	0,49
14	48	30	0,67
16	72	60	0,87
20	78	100	1,36
24	72	135	1,96
30	84	240	3,06
36	93	400	4,41
42	96	525	6,00

Tableau 3 Volume d'eau d'un échangeur de chaleur

Diamètre de	Gallons par pied selon la	longueur de l'enveloppe
l'enveloppe (po)	Dans l'enveloppe	Dans les tuyaux
4	0,425	0,225
6	1,00	0,50
8	1,85	1,00
10	2,40	1,20
12	4,00	2,20
14	5,00	2,50
16	6,50	3,50
18	8,00	4,50
20	10,00	5,50
24	15,00	7,50

TABLEAU FACTEURS D'ACCEPTANCE

Pour réservoirs d'expansion d'acier/sans membrane ASME, réservoirs d'expansion thermique ASME pour eau potable, et réservoirs hydropneumatiques.

Utilisez un manomètre

	ression t. max.				P _f – Press	ion de servi	ce minimale	e au niveau	du réservoir	(psig)/kPa			
psig	kPa	5 34,5	10 68,9	12 82,7	15 103,4	20 137,9	25 172,4	30 206,8	35 241,3	40 275,8	45 310,3	50 344,7	55 379,
10	68,9	0,202	-									'	
12	82,7	0,262	0,075	-									
15	103,4	0,337	0,168	0,101	-								
20	137,9	0,432	0,288	0,231	0,144	-							
25	172,4	0,504	0,378	0,328	0,252	0,126							
27	186,1	0,527	0,408	0,360	0,288	0,168	-						
30	206,8	0,560	0,447	0,403	0,336	0,224	0,112	-					
35	241,3	0,604	0,503	0,463	0,403	0,302	0,202	0,101	-				
40	275,8	0,640	0,548	0,512	0,457	0,366	0,274	0,183	0,091	-			
45	310,3	0,670	0,586	0,553	0,503	0,419	0,335	0,251	0,168	0,084	-		
50	344,7	0,696	0,618	0,587	0,541	0,464	0,386	0,309	0,232	0,155	0,078	-	
55	379,2	0,717	0,646	0,617	0,574	0,502	0,430	0,359	0,287	0,215	0,144	0,072	_
60	413,7	0,736	0,669	0,643	0,602	0,536	0,469	0,402	0,335	0,268	0,201	0,134	0,06
65	448,2	0,753	0,690	0,665	0,627	0,565	0,502	0,439	0,376	0,314	0,251	0,188	0,12
70	482,6	0,767	0,708	0,685	0,649	0,590	0,531	0,472	0,413	0,354	0,295	0,236	0,17
75	517,1	0,780	0,725	0,702	0,669	0,613	0,558	0,502	0,446	0,390	0,333	0,279	0,22
80	551,6	0,792	0,739	0,718	0,686	0,634	0,581	0,528	0,475	0,422	0,370	0,317	0,26
85	586,1	0,802	0,752	0,732	0,702	0,652	0,602	0,552	0,502	0,451	0,401	0,351	0,30
90	620,5	0,812	0,764	0,745	0,716	0,669	0,621	0,573	0,525	0,478	0,430	0,382	0,33
95	655,0	0,820	0,775	0,757	0,729	0,684	0,638	0,593	0,547	0,501	0,456	0,410	0,36
100	689,5	0,828	0,785	0,767	0,741	0,698	0,654	0,610	0,567	0,523	0,479	0,436	0,39
105	723,9	0,835	0,794	0,777	0,752	0,710	0,668	0,626	0,585	0,543	0,501	0,459	0,41
110	758,4	0,842	0,802	0,786	0,762	0,723	0,682	0,642	0,601	0,561	0,521	0,481	0,44
115	792,9	0,848	0,810	0,794	0,771	0,734	0,694	0,655	0,617	0,578	0,540	0,501	0,46
120	827,4	0,854	0,817	0,802	0,780	0,742	0,705	0,668	0,631	0,594	0,557	0,520	0,48
125	861,8	0,859	0,823	0,809	0,787	0,752	0,716	0,680	0,644	0,608	0,573	0,537	0,50
130	896,3	0,864	0,829	0,815	0,795	0,760	0,726	0,691	0,657	0,622	0,586	0,553	0,51
135	930,8	0,868	0,835	0,822	0,802	0,768	0,735	0,701	0,6&8	0,635	0,601	0,563	0,53
140	965,3	0,873	0,840	0,827	0,808	0,776	0,743	0,711	0,679	0,647	0,614	0,582	0,55
145	965,3	0,877	0,845	0,833	0,814	0,783	0,751	0,720	0,689	0,658	0,626	0,595	0,56
150	1034,2	0,880	0,850	0,838	0,820	0,789	0,759	0,729	0,699	0,668	0,638	0,608	0,57
155	1068,7	0,884	0,854	0,843	0,825	0,795	0,766	0,736	0,707	0,677	0,648	0,618	0,58
160	1103,2	0,887	0,859	0,847	0,830	0,801	0,773	0,744	0,716	0,687	0,658	0,630	0,60
165	1137,6	0,890	0,863	0,851	0,835	0,807	0,779	0,751	0,724	0,696	0,668	0,640	0,61
170	1172,1	0,893	0,866	0,855	0,839	0,812	0,785	0,758	0,731	0,704	0,677	0,649	0,62
175	1206,6	0,896	0,870	0,859	0,843	0,817	0,791	0,764	0,738	0,711	0,685	0,659	0,63
180	1241,1	0,899	0,873	0,863	0,847	0,822	0,796	0,770	0,745	0,719	0,693	0,668	0,64
185	1275,5	0,901	0,876	0,866	0,851	0,826	0,801	0,776	0,751	0,726	0,701	0,676	0,65
190	1310,0	0,904	0,879	0,870	0,855	0,831	0,806	0,782	0,757	0,733	0,709	0,684	0,66
195	1344,5	0,906	0,882	0,873	0,858	0,835	0,811	0,787	0,7&3	0,739	0,716	0,692	0,66
200	1379,0	0,908	0,885	0,876	0,862	0,838	0,815	0,792	0,768	0,745	0,722	0,699	0,67
205	1413,4	0,910	0,888	0,878	0,865	0,842	0,819	0,796	0,774	0,751	0,728	0,705	0,68
210	1447,9	0,912	0,890	0,881	0,868	0,845	0,823	0,801	0,779	0,756	0,734	0,712	0,68
215	1482,4	0,914	0,892	0,884	0,871	0,849	0,827	0,805	0,783	0,762	0,740	0,718	0,69
220	1516,8	0,916	0,895	0,886	0,873	0,852	0,831	0,810	0,788	0,767	0,746	0,724	0,70
225	1551,3	0,918	0,897	0,889	0,876	0,855	0,834	0,813	0,792	0,772	0,751	0,730	0,70
230	1585,8	0,919	0,899	0,891	0,879	0,858	0,838	0,817	0,797	0,777	0,756	0,736	0,71
235	1620,3	0,921	0,901	0,893	0,881	0,861	0,841	0,821	0,801	0,780	0,760	0,740	0,72
240	1654,7	0,923	0,903	0,895	0,883	0,864	0,884	0,825	0,805	0,785	0,766	0,746	0,72
245	1654,7	0,924	0,905	0,897	0,886	0,866	0,847	0,828	0,808	0,789	0,770	0,751	0,73
250	1723,7	0,926	0,907	0,899	0,888	0,869	0,850	0,831	0,812	0,793	0,774	0,755	0,73

TABLEAU FACTEURS D'ACCEPTANCE

Pour réservoirs d'expansion d'acier/sans membrane ASME, réservoirs d'expansion thermique ASME pour eau potable, et réservoirs hydropneumatiques.

Utilisez un manomètre

	ression t. max.				Pf – Press	ion de servi	ce minimale	e au niveau (du réservoir	(psig)/kPa			
psig	kPa	60 413,7	65 448,2	70 482,6	75 517,1	80 551,6	85 586,1	90 620,5	95 655,0	100 689,5	105 723,9	110 758,4	115 792,9
60	413,7	-											
65	448,2	0,062	-										
70	482,6	0,118	0,059	-									
75	517,1	0,167	0,111	0,056	-								
80	551,6	0,211	0,158	0,106	0,053	-							
85	586,1	0,251	0,201	0,151	0,101	0,050	-						
90	620,5	0,287	0,239	0,191	0,143	0,096	0,048	-					
95	655,0	0,319	0,273	0,228	0,182	0,137	0,091	0,045	-				
100	689,5	0,347	0,305	0,261	0,218	0,174	0,131	0,087	0,043	-			
105	723,9	0,376	0,334	0,292	0,250	0,208	0,167	0,125	0,083	0,041	-		
110	758,4	0,401	0,361	0,321	0,281	0,241	0,200	0,160	0,120	0,080	0,040	-	
115	792,9	0,424	0,386	0,347	0,309	0,270	0,232	0,193	0,155	0,116	0,007	0,039	_
120	827,4	0,446	0,408	0,371	0,334	0,297	0,260	0,223	0,186	0,149	0,111	0,074	0,037
125	861,8	0,465	0,429	0,394	0,358	0,322	0,286	0,250	0,215	0,179	0,143	0,107	0,071
130	896,3	0,484	0,450	0,415	0,381	0,346	0,312	0,277	0,243	0,208	0,173	0,138	0,104
135	930,8	0,501	0,468	0,439	0,401	0,367	0,334	0,301	0,267	0,234	0,200	0,167	0,134
140	965,3	0,517	0,485	0,453	0,420	0,388	0,356	0,324	0,291	0,259	0,226	0194	0,162
145	999,7	0,532	0,501	0,470	0,438	0,407	0,376	0,344	0,313	0,282	0,250	0,219	0,188
150	1034,2	0,547	0,517	0,486	0,456	0,426	0,396	0,365	0,335	0,305	0,273	0,243	0,213
155	1068,7	0,559	0,530	0,500	0,471	0,441	0,412	0,382	0,353	0,323	0,295	0,265	0,236
160	1103,2	0,573	0,544	0,515	0,487	0,458	0,430	0,401	0,372	0,344	0,315	0,286	0,258
165	1137,6	0,585	0,557	0,529	0,501	0,473	0,446	0,418	0,390	0,362	0,334	0,306	0,278
170	1172,1	0,595	0,568	0,541	0,514	0,487	0,460	0,433	0,460	0,378	0,352	0,325	0,298
175	1206,6	0,606	0,579	0,553	0,527	0,500	0,474	0,447	0,421	0,395	0,369	0,343	0,316
180	1241,1	0,616	0,590	0,565	0,539	0,513	0,488	0,462	0,436	0,411	0,385	0,360	0,334
185	1275,5	0,626	0,601	0,576	0,551	0,526	0,501	0,476	0,451	0,426	0,401	0,376	0,351
190	1310,0	0,635	0,611	0,587	0,562	0,538	0,513	0,489	0,465	0,440	0,415	0,391	0,366
195	1344,5	0,644	0,620	0,597	0,573	0,549	0,525	0,501	0,478	0,454	0,429	0,405	0,381
200	1379,0	0,652	0,629	0,605	0,582	0,559	0,535	0,512	0,489	0,466	0,443	0,419	0,396
205	1413,4	0,660	0,637	0,614	0,591	0,568	0,546	0,523	0,450	0,477	0,455	0,432	0,410
210	1447,9	0,667	0,645	0,622	0,600	0,578	0,556	0,533	0,510	0,489	0,467	0,445	0,423
215	1482,4	0,674	0,653	0,631	0,609	0,587	0,565	0,544	0,522	0,500	0,479	0,457	0,435
220	1516,8	0,682	0,660	0,639	0,618	0,597	0,575	0,554	0,533	0,511	0,490	0,469	0,447
225	1551,3	0,688	0,667	0,646	0,625	0,604	0,583	0,563	0,542	0,521	0,501	0,478	0,459
230	1585,8	0,695	0,675	0,654	0,634	0,613	0,593	0,573	0,552	0,532	0,511	0,490	0,470
235	1620,3	0,700	0,680	0,660	0,640	0,620	0,600	0,579	0,559	0,539	0,521	0,501	0,481
240	1654,7	0,707	0,687	0,668	0,648	0,629	0,609	0,589	0,570	0,550	0,530	0,510	0,491
245	1689,2	0,712	0,693	0,673	0,654	0,635	0,615	0,596	0,577	0,558	0,539	0,520	0,501
250	1723,7	0,718	0,699	0,680	0,661	0,642	0,623	0,604	0,585	0,566	0,548	0,529	0,510

Facteur d'acceptance = $1 - \frac{P_f}{P_0}$

 P_f = la pression minimale absolue, P_0 = la pression maximale absolue

SÉRIES BFA/TXA/FTTE-C

Réservoir d'expansion thermique ASME pour eau potable

(8)

(9)

PSI

gal

Pro	jet:	Soumis par:		Dat	te:
Lieu	1:	Approuvé par :		Dat	te:
Inge	énieur:	Nº commande:		Dat	te:
Ent	repreneur:	Notes:			
Rep	orésentant :				
Do	ncoignomente requis				
Re	nseignements requis				
1	Volume total du réservoir à eau chaude		(1)	gal	L
2	Réglage de la température de l'eau		(2)	°F	°C
3	Pression minimale de fonctionnement au réservoir		(3)	PSI	kPa
4	Pression maximale permise ou réglage de la soupape de détente		(4)	PSI	kPa
			<u>'</u>		
Ca	lcul du volume				
5	Inscrivez le volume total du réservoir à eau chaude de la ligne (1)		(5)	gal	L
6	Trouvez et inscrivez le facteur de dilatation. (Consultez le tableau	ı de la p.94)	(6)		
7	Multipliez le résultat de la ligne (5) par celui de la ligne (6) pour d	déterminer la quantité d'eau dilatée.	terminer la quantité d'eau dilatée. (7)		

Sélection du modèle

dans le réservoir.

(Consultez le tableau de la p. 99 et 100)

Référez-vous à la fiche technique appropriée (séries BFA, TXA ou FTTE-C) et sélectionnez le modèle dont le volume est égal ou supérieur au volume total minimal requis (9) et au volume d'admission minimal requis (7).

Trouvez et inscrivez le facteur d'acceptance selon les pressions indiquées aux lignes (3) et (4).

Divisez le résultat de la ligne (7) par celui de la ligne (8) pour obtenir le volume minimal requis

kPa

L

RÉSERVOIR D'EXPANSION THERMIQUE ASME POUR EAU POTABLE

Facteurs de dilatation

Tableau 1

Facteurs de dilatation en fonction d'une température minimale de l'eau de 40 °F/4,4 °C

Divers degrés de température maximale									
120°F	120°F 48,8°C 140°F 60°C		60°C	160 °F 71,1 °C		180 °F 82,2 °C		200 °F	93,3°C
0,01006		0,01	.503	0,02094		0,02765		0,03	3512

Pour d'autres températures, veuillez vous référer au tableau de la page 91

Facteurs d'acceptance

Tableau 2

Facteurs d'acceptance (utilisez les pressions manométriques)

Pression maximale		Pression minimale de fonctionnement au réservoir															
		psig	kPa	psig	kPa	psig	kPa	psig	kPa	psig	kPa	psig	kPa	psig	kPa	psig	kPa
psig	kPa	60	413,7	65	448,2	70	482,6	75	517,1	80	551,6	85	586,1	90	620,5	95	655,0
100	689,5	0,347		0,3	305	0,:	261	0,:	218	0,1	174	0,1	131	0,0	087	0,0	043
125	861,8	0,465		0,4	429	0,3	394	0,3	358	0,3	322	0,2	286	0,2	250	0,2	215

SÉRIE AFX

Réservoirs hydropneumatiques

A) Fonction des réservoirs hydropneumatiques

Un réservoir hydropneumatique peut accomplir plusieurs fonctions. Dans une station de surpression, le réservoir alimente l'installation en eau durant les périodes de débit nul au cours des arrêts de la pompe où il peut fournir de l'eau pour compenser les fuites. Dans le cas d'un puits, le réservoir fournit la quantité d'eau requise au cours de la période qui s'écoule entre l'atteinte de la pression de fermeture de la pompe jusqu'à l'atteinte de la pression de mise en marche.

S'il s'agit de la pompe d'un système d'arrosage ou d'irrigation, le réservoir fournit une sorte de tampon qui maintient la pression au niveau requis et empêche le démarrage trop fréquent de la pompe régulatrice de pression de type jockey.

Dans tous les cas, la quantité d'eau que le réservoir doit stocker pour fournir l'installation à n'importe quel cycle se nomme l'abaissement du niveau. Il faut d'abord déterminer cet abaissement afin de pouvoir calculer correctement les dimensions du réservoir hydropneumatique.

Il existe deux formes de réservoirs hydropneumatiques, les réservoirs sans membrane et les réservoirs avec membrane ou vessie. Les deux types remplissent la même fonction dans une installation. Le réservoir à vessie est plus petit et requiert moins d'espace au sol, tandis que le coût d'achat initial du réservoir sans membrane est moins élevé.

Le réservoir à vessie ou à membrane comporte une barrière de caoutchouc qui empêche tout contact entre l'eau et l'air, c'est ce contact qui justement favorise l'apparition d'un trop-plein dans un réservoir sans membrane. Les dimensions de ces deux types de réservoirs diffèrent et il faut prendre soin de choisir la procédure de dimensionnement qui convient le mieux.

B) Calcul de l'abaissement du niveau

Eau de puits

Dans une application de ce genre, la pompe alimente le réseau en eau et le réservoir hydropneumatique y remplit deux fonctions. Tout d'abord, il procure de l'eau à l'installation lorsque la pompe s'arrête et il empêche la pompe d'exécuter des cycles trop rapides.

Avant de sélectionner le format du réservoir hydropneumatique. il faut déterminer la façon dont l'installation fonctionne ainsi que la durée voulue du cycle de la pompe.

La durée du cycle

La durée du cycle est la période écoulée entre les déclenchements de la pompe. Si la durée du cycle de la pompe doit être régulée par un réservoir hydropneumatique, il faut d'abord déterminer à quelle fréquence la pompe doit se mettre en marche. Il appartient au concepteur de prendre une décision à cet égard.

Certains fabricants de pompes ou de moteurs recommandent que la pompe soit régulée de façon à ne pas se mettre en marche plus de six (6) fois l'heure. Pour choisir le réservoir hydropneumatique qui conviendra à cette installation, il faut tenir compte de deux aspects: la capacité de la pompe et les exigences de l'installation. Examinons ces deux aspects séparément.

SÉRIE AFX

Réservoirs hydropneumatiques

C) Stations de surpression

Dans une station de surpression, le réservoir remplit de nombreuses fonctions.

- (1) Le réservoir peut servir à régulariser l'apport d'eau à l'installation lorsque la distribution d'eau est irrégulière et que la pompe ne fonctionne pas en continu. Un immeuble de bureaux constitue un bon exemple d'endroit où il est impossible d'établir avec précision les tendances en matière de demande en eau. Pour déterminer l'abaissement du niveau d'eau dans cette application, il faudrait suivre la même méthode que dans le cas d'un puits.
- (2) Le réservoir peut également alimenter l'installation en eau lorsque la pompe doit être arrêtée pendant des périodes prolongées, comme durant la nuit où personne ne se trouve normalement dans l'immeuble. L'abaissement du niveau d'eau serait déterminé en évaluant la demande prévue exigée de l'installation de surpression pendant une période d'arrêt, une fuite de l'installation (robinets qui fuient), l'entretien de l'édifice (personnel remplissant des seaux d'eau) ou l'utilisation des cabinets (chasse d'eau).
- Si l'installation décrite au point 1 est suffisamment imposante, comme dans une école, le fait de contrôler la période de marche à l'aide d'une minuterie permettrait de réduire le format du réservoir nécessaire. Dans ces circonstances, la pompe fonctionne constamment alors que la demande est assez constante, mais lorsque l'immeuble est inoccupé durant la nuit, la minuterie permettrait à la station de surpression de fonctionner de la manière indiquée au point deux ci-dessus. Il est possible de déterminer ensuite l'abaissement du niveau en se servant de la demande de nuit prévue.
- (3) Dans les systèmes de pompage à vitesse variable, la pression et le débit d'eau sont régulés au moyen d'une pompe de surpression et le résevoir hydropneumatique ne sert que lorsque la pompe s'arrête en raison d'un débit nul. Le réservoir alimente alors l'installation en eau si elle fuit, ce qui empêche les démarrages trop fréquents de la pompe. Pour que le réservoir fonctionne, il faut qu'il existe une différence de pression entre la pression d'arrêt de la pompe et la pression de déclenchement de celle-ci. En tenant compte de cette différence de pression et de l'abaissement du niveau requis du volume, la dimension du réservoir hydropneumatique peut être calculée correctement.

D) Systèmes d'arrosage

Nombre de systèmes d'extinction des feux automatique incluent une pompe régulatrice de pression de type jockey qui maintient l'installation à la pression requise. Si l'installation fuit, il est possible que la pompe régulatrice de pression de type jockey commence à se déclencher trop fréquemment puisque l'eau n'est pas compressible. En installant un réservoir hydropneumatique au-delà de la pompe régulatrice de pression de type jockey, on fournit un tampon qui empêchera le déclenchement trop fréquent de la pompe tout en maintenant le système à la pression désirée. L'abaissement du niveau est calculé d'après le débit de fuite acceptable.

E) Systèmes d'irrigation

Dans le cas de cette application, on utilise les mêmes critères que ceux applicables à un système d'arrosage, tels que décrits ci-dessus. Le dimensionnement du réservoir hydropneumatique suit les mêmes règles. Cependant, une pompe régulatrice de pression de type jockey peut fournir de l'eau au réseau de distribution ponctuellement.

SÉRIE AFX

Réservoirs hydropneumatiques

Capacité de la pompe

Le format de la pompe est habituellement quelque peu supérieur aux exigences de l'installation et le réservoir hydropneumatique qui convient peut être choisi en fonction de la capacité de la pompe. Si on calcule que le cycle dure dix (10) minutes, on peut présumer que le cycle de plus courte durée sera déterminé en combinant le moment où la pompe fonctionne et où Il n'y a aucune demande, suivi du moment où la demande est de 100 % et où la pompe est en arrêt.

À partir de là, si la pompe est en service cinq (5) minutes sans demande de l'installation, toute l'eau s'écoulera dans le réservoir hydropneumatique et si la demande de l'installation s'élève alors à 100 % pendant les cinq (5) prochaines minutes et que la pompe s'arrête, toute l'eau s'écoulera hors du réservoir et l'installation sera prête à recommencer un nouveau cycle.

On peut donc conclure que la durée du cycle est de dix (10) minutes et que sa fréquence est de six (6) fois l'heure, mais comme il est possible de le deviner immédiatement, il est peu pratique d'imaginer une pompe fonctionnant sans qu'il y ait demande de l'installation ou une installation fonctionnant dès que la pompe s'arrête. Toutes les fois où la pompe et l'installation fonctionnent simultanément, la durée du cycle s'en trouve toujours accrue.

Exemple

- La capacité de la pompe est de 10 gallons la minute.
- L'abaissement du niveau équivaudrait à 50 gallons.
- La pompe se met en marche à une pression de 30 psi et elle s'arrête à 45 psi.
- Un réservoir hydropneumatique à membrane d'une capacité totale de 200 gallons serait requis.*

Demande de l'installation

Si la demande de l'installation est inférieure à la capacité de la pompe, il est possible de réduire le format du réservoir afin de tenir compte de cette différence.

Exemple

- La capacité de la pompe est de 10 gallons par minute.
- La demande de l'Installation est de 5 gallons par minute.

Un cycle de dix (10) minutes donnerait lieu à un système dans lequel un total de cinquante (50) gallons par cycle serait nécessaire. La pompe d'une capacité de 10 gal./min fonctionnerait cinq (5) minutes et pomperait cinquante (50) gallons, ce qui donnerait lieu à un cycle d'une durée de quinze (15) minutes.

Comme on recherche un cycle de dix (10) minutes, il faudrait alors diviser la période de dix (10) minutes par la période de quinze (15) minutes pour obtenir un cœfficient de 0,66666. 50 × 0,66666 = 33,33 gallons, soit la quantité nécessaire par cycle. Il s'agit de l'abaissement du niveau du réservoir dans cette application:

33,33 gal. = pompe d'une capacité de 10 gal. par minute = 3,333 min. de durée de pompage

33,33 gal. = 5 gal. par minute en tant que demande de l'installation

= 6,666 min. (demande de l'installation) / cycle Durée de cycle de 10 minutes

L'abaissement du niveau du réservoir est à présent de 33,33 gallons.

La pompe se met en marche à une pression de 30 psi et elle s'arrête à 45 psi.

Un réservoir à vessie hydropneumatique doté d'une capacité totale de 133 gallons serait nécessaire.*

^{*}Consultez les fiches techniques appropriées pour obtenir les dimensions des réservoirs.

CALCUL DU VOLUME

Réservoirs hydropneumatiques

Projet: Lieu:		oumis par:	Date:			
		pprouvé par :	Date	Date:		
Ing	énieur:Nº	commande:	Date	Date:		
Ent	repreneur:No	otes:				
Rep	orésentant :					
Do	nsoignoments requis					
Re	nseignements requis					
1	Vidange (le réservoir doit fournir)		(1)	gal	L	
2	Pression minimale requise		(2)	°F	°C	
3	Pression maximale requise		(3)	°F	°C	
Sé	lection d'un modèle : réservoir à vessie					
4	Inscrivez la capacité de vidange requise de la ligne (1).		(6)	gal	L	
5	À l'aide du tableau «Facteurs d'acceptance » (voir p.99-100), calculez et	t inscrivez le facteur d'acceptance.	(7)			
6	Divisez le résultat de la ligne (4) par celui de la ligne (5), inscrivez le vo	olume total du réservoir.	(8)	gal	L	

Tiré de l'exemple présenté à la page 96 Vidange 50 gal 2 Pression minimale 30 PSI 45 PSI Pression maximale Vidange (chiffre de la ligne 1) 50 gal Facteur d'acceptance 0,251 6 Divisez le résultat de la ligne (4) par celui de la ligne (5), inscrivez le volume total du réservoir 199,2 gal

SÉRIE NA

Sélection du modèle

Modèle _____

Réservoirs d'expansion d'acier Sans membrane

Soumis par:		Date:			
Approuvé par:	Approuvé par :				
Nº commande:					
Notes:					
rcuit	(1)	gal	L		
t rempli	(2)	°F	°C		
ment	(3)	°F	°C		
Pression minimale de fonctionnement (habituellement, la pression de remplissage)					
Pression maximale de fonctionnement (10 % sous le seuil de la soupape de détente)					
		<u> </u>			
èmes de chauffage ou de climatisation à calopor	teur				
u dans le circuit de la ligne (1) .	(6)	gal	L		
tion» (voir p. 91), calculez et inscrivez le facteur de dilatation.	(7)				
celui de la ligne (7) . Inscrivez le volume d'expansion de l'eau.	(8)	gal	L		
de de la formule (Pa ÷ P _f) (Pa ÷ Po) et inscrivez le résultat. ssion atmosphérique r pression atmosphérique	(9)	PSI	kPa		
elui de la ligne (9) ; inscrivez le volume total du réservoir.	(10)	gal	L		
de de la ession at F pressio	formule (Pa ÷ Pƒ) (Pa ÷ Po) et inscrivez le résultat. mosphérique on atmosphérique	formule (Pa ÷ P _f) (Pa ÷ Po) et inscrivez le résultat. (9) mosphérique on atmosphérique	formule (Pa ÷ Pf) (Pa ÷ Po) et inscrivez le résultat. (9) PSI mosphérique on atmosphérique		

MISE EN GARDE: Le tableau «Facteur de dilatation» n'a été prévu que pour les systèmes utilisant l'eau comme caloporteur. Ajoutez 60% au facteur de dilatation lorsqu'une solution moitié glycol, moitié eau est employée ou communiquez avec le représentant Calefactio de votre région si la concentration de la solution est différente.

Choisissez le modèle approprié de réservoir d'expansion d'acier non allié à partir de la section NA (voir p.59).

CONVERSION

D'un réservoir d'expansion sans membrane à un réservoir d'expansion à membrane

Projet:		Soumis par:		Date:		
Lieu	t:	Approuvé par :		Date:		
Ingé	nieur:	Nº commande:	Date:			
Enti	repreneur:	Notes:				
Rep	résentant:					
Re	nseignements requis					
1	Calculez le volume du réservoir d'expansion d'acier sans membr	rane (tableau 2, p. 92)	(1)	gal	L	
2	Température de l'eau une fois le circuit rempli		(2)	°F	°C	
3	Température maximale de fonctionnement		(3)	°F	°C	
4	Pression minimale de fonctionnement (habituellement, la pressi	ion de remplissage)	(4)	PSI	kPa	
5	Pression maximale de fonctionnement (10 % sous le seuil de la s	(5)	PSI	kPa		
Ca	Calculez le facteur d'acceptance à l'aide de la formule (Pa ÷ Pf) où Pa = Pression (atmosphérique) Pf = Pression de remplissage + pression atmosphérique	-	(6)	PSI	kPa	
_	Po = Pression de fonctionnement + pression atmosphérique					
7	Inscrivez le volume du réservoir d'expansion d'acier sans memb	rane de la ligne (1) .	(7)	gal	L,	
8	Calculez le volume de l'eau en expansion. Multipliez le résultat d et inscrivez la réponse.	e la ligne (6) par celui de la ligne (7)	(8)			
9	À l'aide du tableau «Facteurs d'acceptance» (voir p. 99 et 100),	(9)	gal	L		
10	Divisez le résultat de la ligne (8) par celui de la ligne (9); inscrive	ez le volume total du réservoir.	(10)	gal	L	
	Ligne (8) , volume d'expansion de l'eau (v	volume toléré) Ligne (10)	, v	olume total du r	éservoir	

Sélection du modèle

Choisissez l'un des modèles de réservoirs d'expansion à partir de la table des réservoirs à vessie ou à membrane.

- Les modèles HGT (non-ASME) ou OT doivent respecter les critères des lignes (8) et (10).
- Les modèles AL ne doivent respecter que le critère de la ligne (10).

Dans le cas de systèmes de grande envergure, plusieurs réservoirs d'expansion peuvent être raccordés ensemble.

MISE EN GARDE: Le tableau « Facteur de dilatation » n'a été prévu que pour les systèmes utilisant l'eau comme caloporteur. Ajoutez 60 % au facteur de dilatation lorsqu'une solution moitié glycol, moitié eau est employée ou communiquez avec le représentant Calefactio de votre région si la concentration de la solution est différente. Plusieurs réservoirs d'expansion peuvent être raccordés ensemble.

- © calefactio_solutions
- **f** calefactio
- in calefactio-solutions-inc

Québec, Canada T 450 951-0818 F 450 951-2165 info@calefactio.com

calefactio.com

